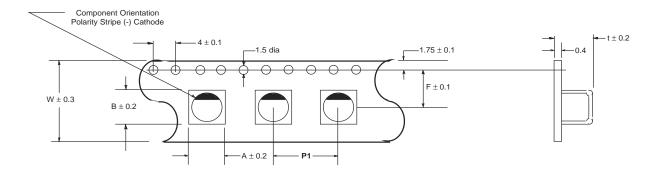
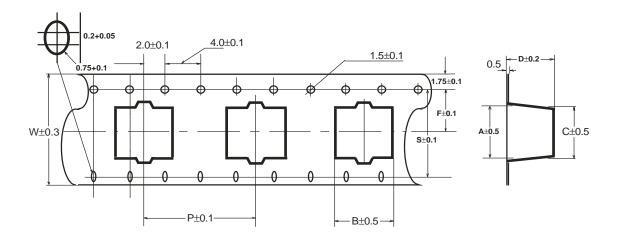

Reflow Soldering Temperature Profile:

Case	Peak	Max. Time
Code	Temp (°C)	@ 200 °C
		(Sec.)
A, B, C, D	240	40
E, F, G, H	230	30
J, K, L, P		
R, S, U, X		

Outline Drawing

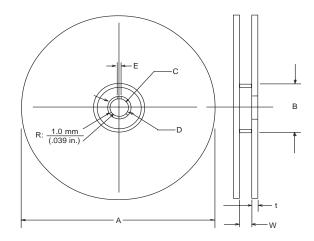


Case Dimensions -

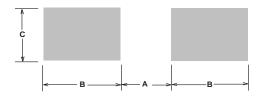

Case					(mm)			
Code	D ±0.5	L	A ±0.2	H (max)	l (ref)	W	P (ref)	K
Α	3.0	5.4 +.1,.2	3.3	4.5	1.5	0.55 ±0.1	0.60	0.35 +0.15 -0.20
В	4.0	*5.4 +.1,.2	4.3	5.5	1.8	0.65 ± 0.1	1.00	0.35 +0.15 -0.20
С	5.0	*5.4 +.1,.2	5.3	6.5	2.2	0.65 ± 0.1	1.50	0.35 +0.15 -0.20
D	6.3	*5.4 +.1,.2	6.6	7.8	2.4	0.65 ± 0.1	1.80	0.35 +0.15 -0.20
Χ	6.3	7.9 ±.3	6.6	7.8	2.6	0.65 ± 0.1	1.80	0.35 +0.15 -0.20
Е	8.0	6.2 ±.3	8.3	9.5	3.4	0.65 ± 0.1	2.20	0.35 +0.15 -0.20
F	8.0	10.2 ±.3	8.3	10.0	3.4	0.90 ± 0.2	3.20	0.70 ± 0.20
G	10.0	10.2 ±.3	10.3	13.0	3.5	0.90 ± 0.2	4.60	0.70 ± 0.20
Н	12.5	13.5 ±.5	13.5	15.0	4.7	0.90 ± 0.3	4.40	0.70 ± 0.30
J	10.0	13.5 ±.5	10.3	12.0	3.5	0.90 ± 0.2	4.60	0.70 ± 0.20
K	10.0	16.5 ±.5	10.3	12.0	3.5	0.90 ± 0.2	4.60	0.70 ± 0.20
L	12.5	16.5 ±.5	13.5	15.0	4.7	0.90 ± 0.3	4.40	0.70 ± 0.30
Р	16.0	16.5 ±.5	17.0	19.0	5.5	1.20 ± 0.3	6.70	0.70 ± 0.30
R	18.0	16.5 ±.5	19.0	21.0	6.5	1.20 ± 0.3	6.70	0.70 ± 0.30
S	18.0	21.5 ±.5	19.0	21.0	6.5	1.20 ± 0.3	6.70	0.70 ± 0.30
U	16.0	21.5 ±.5	17.0	19.0	6.7	1.20 ± 0.3	6.70	0.70 ± 0.30

^{*5.8 ±.3} for AFK and AHD Series

Tape Specifications



Case		(mm)				
Code	W	Α	В	P1	F	t
А	12.0	3.4	3.5	8.0	5.5	5.8
В	12.0	4.7	4.6	8.0	5.5	5.8
С	12.0	6.0	6.0	12.0	5.5	5.8
D	16.0	7.0	7.0	12.0	7.5	5.8
Х	16.0	7.0	7.0	12.0	7.5	8.4
E	16.0	8.7	8.7	12.0	7.5	6.8
F	24.0	8.7	8.7	16.0	11.5	11.0
G	24.0	10.7	10.7	16.0	11.5	11.0


Case				(m	m)			
Code	W	Α	В	С	D	F	P	S
J	32	10.7	10.7	14.5	14.5	14.2	20	28.4
K	32	10.7	10.7	14.5	18.5	14.2	20	28.4
Н	32	14.0	14.0	18.0	14.5	14.2	24	28.4
L	32	14.0	14.0	18.0	17.5	14.2	24	28.4
Р	44	17.5	17.5	23.0	17.5	20.2	28	40.4
R	44	19.5	19.5	26.0	17.5	20.2	32	40.4
S	44	19.5	19.5	26.0	22.5	20.2	32	40.4
U	44	17.5	17.5	23.0	22.5	20.2	28	40.4

Reel Specifications

Case				(mm)			
Code	A	В	С	D	E	W	t
A, B size	380 ±2.0	50 min	13.0 ±0.5	21.0 ±0.8	2.0 ±0.5	14 ±1.0	3.0
C, D, E, X size	$380\ \pm2.0$	50 min	13.0 ± 0.5	21.0 ±0.8	2.0 ± 0.5	18 ± 1.0	3.0
F, G size	380 ±2.0	50 min	13.0 ± 0.5	21.0 ± 0.8	2.0 ± 0.5	26 ±1.0	3.0
J, K, H, L size	330 ± 2.0	50 min	13.0 ± 0.5	21.0 ± 0.8	2.0 ± 0.5	34 ± 1.0	3.0
P, R, S, U size	330 ±2.0	50 min	13.0 ± 0.5	21.0 ± 0.8	2.0 ± 0.5	46 ±1.0	3.0

Land Pattern:

Case	(mm)		
Code	Α	В	С
А	0.6	2.2	1.5
В	1.0	2.5	1.6
С	1.5	2.8	1.6
D	2.2	3.0	1.6
Е	2.2	4.5	1.6
F	3.2	4.0	2.0
G	4.6	4.3	2.0
J, K	4.0	4.5	2.0
Н	4.0	5.7	2.0
L	4.0	5.7	2.0
Р	6.0	6.5	2.5
U	6.0	6.5	2.5
R, S	6.0	7.5	2.5

Cleaning

Below is a table describing the acceptable cleaning agents for cleaning a PC board containing SMT aluminum electrolytic capacitors in vertical cylindrical cans (V-Chips).

			Recommended	Symptoms				
Cleaning Agent	Name	Manufacturer	Use Level	of Damage				
Water Base								
Water Base	Distilled Water		1	None				
Alkaline	Aqua Cleaner 210SEP	Sanei	2					
	Pine Alpha ST-100S	Aralawa Kasei Kogyo	2	_				
	Clean-thru 750H		2	None though				
Surface active	Clean-thru 750L	Kao Corporation	2	None, though marking ink may				
agent	Clean-thru 710M		2	fade				
	Sun-elec B-12	Sanyo Kasei	2					
	DK be-clean CW-5790	Dai-ichi Kogyo Seiyaku	2					
		Solvent Base						
Petroleum	Cold-cleaner P3-375	Henkel Hakusui	3	Swelling on				
Based	Techno-cleaner 219	Seiwa Sangyo	3	sealing rubber, rinse and dry well				
Hydrocarbon	Axarel 32	Mitsui DFC	3	after cleaning				
Alcohol base	Isopropyl Alcohol		1	None				
	Techno-care FRW-17		3	None if used				
Silicon base	Techno-care FRW-1	Toshiba Corporation	3	in				
	(Techno-care FRV-100)		3	combination				
	Asashi-clean AK- 225AES	Ashahi Glass	3	Contains CFC's subject				
Halogenated hydrocarbon	HCFC141B-MS	Daikin Kogyo	3	to environmental regulations				
Telpen base	Telpen-cleaner EC-7R	Nippon Alpha Metals	3	Swelled seal				

Use Level Number	Recommendations
1	Cleaning is possible
2	Cleaning is possible (marking may fade)
3	Cleaning is possible (Use caution. 1 and 2 are better choices)

V-Chips may be immersed for 5 minutes, safely, in Level 1&2 solvents. Use Level 3 solvents with caution

Do not use chlorine-based halogenated cleaning solvents, adhesives or coating agents.

When halogenated chlorine-based solvents are used in the cleaning process, free chlorine is liberated from the solvent. This chlorine causes corrosion and deterioration of the aluminum inside the capacitor.

Dangers of "Free-Chlorine":

After the solvent dries, the chlorine remains on the capacitor seal, the chlorine slowly permeates into the capacitor element causing corrosion and damage that happens slowly. It may take some time before a failure is apparent. A representation of the chemical reaction is on the following page.

Reaction of Free-chlorine and Aluminum

Combined free chlorine and hydrogen become hydrochloric acid, but it has high dissociation and most of it becomes chlorine ions. These chlorine ions react with the aluminum. The order of the reactions is represented below.

- 1.) Hydration of oxide film $AIO_3 + 3H_2O \longrightarrow 2AI(OH)_3$
- 2.) Reaction of hydrated oxide film and chlorine (Dissolution of film) Al(OH)₃ + 3HCl AlCl₃ + 3H₂O
- 3.) Reaction of aluminum and hydrochloric acid (Dissolution of aluminum)

 AI + 3HCI AICI₃ + 3/2H₂ †
- 4.) Precipitation of aluminum hydroxide AICI₃ + 3H₂O AI(OH)₃ + 3HCI

The entire reaction can be summerized as the following: $AI + AI_2O_3 + 3HCI_3 + 3H_2O \longrightarrow 2AI(OH)_3 + AICI_3 + H3/2$

Therefore the compounds produced by the reactions are aluminum hydroxide and hydrochloric acid from reaction #4; the hydrochloric acid is not consumed and acts as a catalyst.

Solvents that should not be used

Composition	Boiling Point (°C)	Common Name	
1.1.1 -Trichloroethane	74.1	Chlorosen	
Trichloroethylene	87.2	Trichlene	
Tetrachloroethylene	121.1	Perchloroenthylene	

Additional Cleaning Notes:

- 1.) Solvents containing CFC's destroy the ozone layer and should be avoided to protect the global environment.
- 2.) To avoid solvent residue between the capacitor's seal and the PC board, make sure the assembly is dried thoroughly after cleaning.

Coating —

Below is a list of coatings that are safe for use with V-Chips

Manufacturer	Material	Coating Material Name
Hitachi Chemical	Acrylic	Taffi -1141, Taffi -1147
Tillacili Cilettiicai	Urethane	Taffi -1154
Boxy Brown	Acrylic	Humi Seal 1B66
BOXY BIOWII	Urethane	Humi Seal 1A27
Dow Corning	Silicon	Perugan Z, Perugan C
Nihon Zeon	Urethane	Quinate System 160B

Notice and Disclaimer: All product drawings, descriptions, specifications, statements, information and data (collectively, the "Information") in this datasheet or other publication are subject to change. The customer is responsible for checking, confirming and verifying the extent to which the Information contained in this datasheet or other publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without any guarantee, warranty, representation or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on the knowledge that the Cornell Dubilier company providing such statements ("Cornell Dubilier") has of operating conditions that such Cornell Dubilier company regards as typical for such applications, but are not intended to constitute any quarantee, warranty or representation regarding any such matter – and Cornell Dubilier specifically and expressly disclaims any quarantee, warranty or representation concerning the suitability for a specific customer application, use, storage, transportation, or operating environment. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by Cornell Dubilier with reference to the use of any Cornell Dubilier products is given gratis (unless otherwise specified by Cornell Dubilier), and Cornell Dubilier assumes no obligation or liability for the advice given or results obtained. Although Cornell Dubilier strives to apply the most stringent quality and safety standards regarding the design and manufacturing of its products, in light of the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies or other appropriate protective measures) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated in such warnings, cautions and notes, or that other safety measures may not be required.