

HIGH POWER COMPONENTS

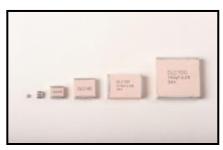
FOR HIGH CURRENT/ HIGH VOLTAGE APPLICATIONS

- High-Q Low ESR Capacitors
- High Power Custom Assemblies

Traditional High Q (>10,000) Low ESR Multi-Layer Ceramic Capacitors

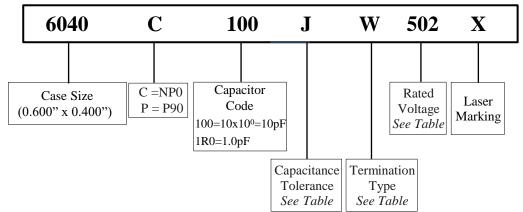
Product Features

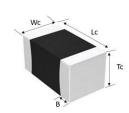
- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance


† Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching


Typical Circuit Applications:


- UHF/Microwave RF Power Amplifiers •
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

‡ Case Size (Chip) Dimensions

	2225	3838	6040	7676
Length (L _c)	0.225 -0.010+0.25	0.380 -0.010+0.015	0.614 -0.010+0.015	0.760 -0.010+0.015
	(5.72 -0.25+ 0.64)	(9.65 -0.25+0.38)	(15.6 -0.25+0.38)	(19.3 -0.25+0.38)
Width (W _c)	0.250 ± 0.015	0.380±0.010	0.433±0.010	0.760±0.010
	(6.35 ± 0.38)	(9.65±0.25)	(11.0±0.25)	(19.3±0.25)
Thickness (T _c)	0.150	0.170	0.154±0.008	0.154±0.008
	(3.81) max	(4.32) max	(3.90±0.20) max	(3.90±0.20) max
Overlap (B)	0.020~0.470	0.024~0.059	0.063	0.063
	(0.50~1.20) max	(0.60~1.50)	(1.60) max	(1.60) max

Temperature Coefficient

C: -55°C to 125°C 0 ± 30 ppm/°C; >125 °C to 200°C 0 ± 60 ppm/°C

P: $+90\pm20$ ppm/°C

≠ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10

Tolerance

	Capacitance Tolerance								
Code	A	В	C	D	F	G	J	K	
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%	

† Termination Types and Codes

Magnetic

Terminati Code	Termination Code Type		Magnetic Termination	Terminatio Code	on	Type	Non-Magnetic Terminations
W	RoHS	Chip	100% Sn Solder over Nickel Plating	P	RoHS	Chip	100% Sn Solder over Copper Plating
L		Chip	90% Sn10%Pb Tin/Lead Solder	MN N	онs	Microstrip	_
			over Nickel Plating	AN N	нs	Axial Ribbon	
MS	RoHS	Microstrip		RN 🛣	oHS	Axial Wire	Silver-Plated
AR	RoHS	Axial Ribbon	Silver-Plated	BN 🐒	онs	Radial Wire	Copper
RW	RoHS	Axial Wire	Copper				_
AW	RoHS	Radial Wire					

≠ Voltages

Code	Rated Voltage	Code	Rated Voltage
501	500V	362	3600V
102	1000V	502	5000V
152	1500V	722	7200V
202	2000V	802	8000V
252	2500V	103	10000V
302	3000V		

Laser Marking

An "X" at the end of the part number indicates the part is marked.

Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

All products are in compliance with RoHS instruction.

Marking shown for illustration purposes only.

Traditional High Q (>10,000) Low ESR **Multi-Layer Ceramic Capacitors**

2225C/P (0.220" x 0.250")

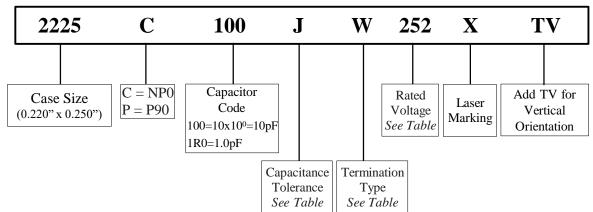
Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 0.5pF to 2700pF
- Working Voltage: 2500V
- Extended Voltage: 3600V

† Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- D.C. Blocking Impedance Matching


Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Antenna Tuning Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

† Capacitance Tolerance Codes

Code	A	В	C	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

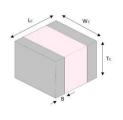
† Voltage Codes

Voltage	Code
500V	501
1000V	102
1500V	152
2000V	202
2500V	252
3000V	302
3600V	362

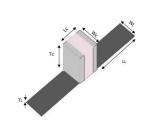
≠ 2225C/P Capacitance Values

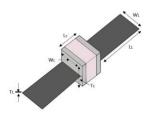
• NP0=C; P90=P

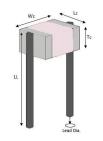
Special capacitances, tolerances and WVDC are available. Please contact PPI.

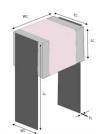


Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated \	WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC
рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.	pF	Code	101.	Std.	Ext.	pF	Code	101.	Std.	Ext.
0.5	0R5				4.3	4R3				43	430			430	431	F,G,	1500V	2000V	
0.6	OR6				4.7	4R7				47	470			470	471	J,K	13000 20000		
0.7	OR7				5.1	5R1				51	510				510	511			
0.8	OR8				5.6	5R6	D. C			56	560				560	561			
0.9	OR9				6.2	6R2	B,C, D	2500V	3600V	62	620	F,G,	25001/	3600V	620	621			
1.0	1R0				6.8	6R8	_			68	680	J,K	23000	30000	680	681			
1.1	1R1				7.5	7R5				75	750				750	751	F,G,	1000\/	1500V
1.2	1R2				8.2	8R2				82	820				820	821	J,K	10000	13000
1.3	1R3				9.1	9R1				91	910				910	911	i		
1.4	1R4			,	10	100				100	101				1000	102			
1.5	1R5				11	110				110	111				1100	112			
1.6	1R6	B,C,	25001	3600V	12	120				120	121				1200	122			
1.7	1R7	D	2500V	3000V	13	130				130	131				1500	152			
1.8	1R8				15	150				150	151				1800	182	F,G,	500V	N/A
1.9	1R9				16	160				160	161	F,G,	25001/	3000V	2200	222	J,K	500V	IN/ A
2.0	2R0				18	180				180	181	J,K	2500V	30000	2700	272			
2.1	2R1				20	200	F,G, J,K	2500V	3600V	200	201								
2.2	2R2				22	220	3,10			220	221								
2.4	2R4				24	240				240	241								
2.7	2R7				27	270				270	271								
3.0	3R0				30	300				300	301								
3.3	3R3				33	330				330	331	F,G,	15001	20001					
3.6	3R6				36	360				360	361	J,K	1500V	2000V					
3.9	3R9				39	390				390	391								




÷ Termination Types and Codes


Chip Termination: Codes: W, L, P


Microstrip Termination: Codes: MS, MN


Axial Ribbon Termination: Code: AR, AN

Radial Wire Termination: Codes: RW, RN

Radial Ribbon Termination: Code: RR, FN

Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination						
W Nows	100% Sn						
VV RŏHS	Solder over Nickel Plating						
L	90% Sn10%Pb Tin/Lead						
L	Solder over Nickel Plating						
MS ROHS							
AR ROHS							
RR ROHS	Silver-Plated Copper						
RW ROHS							
AW ROHS							

Termination Code	Non-Magnetic Termination
P Rohs	100%Sn
MN RoHS	Solder over Copper Plating
AN ROHS	_
FN ROHS	Silver-Plated Copper
RN ROHS	_
BN ROHS	

Note: "Non-Magnetic" means no magnetic materials.

For Termination Types For Termination Types images, see previous page

Unit: inch (millimeter)

	Magnetic Terminations								
		Cap	acitor Dim	ensions		Lead Dimensions			
		Length	Width	Thickness	s Overlap	Length	Width	Thickness	
Code	Term.	Lc	Wc	Tc	В	$\mathbf{L}_{\mathbf{L}}$	$\mathbf{W}_{\mathbf{L}}$	$T_{ m L}$	
W/L	Chip	0.225 -0.010+0.25 (5.72 -0.25+ 0.64)	0.250 ± 0.015 (6.35 ± 0.38)	(4.19)	0.020~0.047 (0.50~1.20) max				
MS	Microstrip					0.500	0.240 ±0.005	0.008 ±0.001	
AR	Axial Ribbon		0.250 ± 0.015 (6.35 ± 0.38)	(3.81)		(12.70) min	(6.1 ± 0.13)	(0.2 ± 0.025)	
RR	Radial Ribbon	0.245 ± 0.025 (6.22 ± 0.64)				0.354 (9.00) min	$0.118 \pm 0.005 \\ (3.0 \pm 0.13)$		
RW	Radio Wire					0.709 (18.00) min	_ Dia. = 0 .0)31 ±0.004	
AW	Axial Wire					0.906 (23.00) min	(0.80	±0.10)	
		Ø N	Non-Magne	tic Termi	inations 🧷)			
		Cap	acitor Dim	ensions		Le	ad Dimensio	ons	
		Length	Width	Thickness	s Overlap	Length	Width	Thickness	

		Cap	acitor Dim		Lead Dimensions			
		Length	Width	Thickness	s Overlap	Length	Width	Thickness
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL
Р	Chip	0.225 -0.010+0.25 (5.72 -0.25+ 0.64)	0.250 ± 0.015 (6.35 ± 0.38)	0.165 (4.19) max	0.020~0.047 (0.50~1.20) max			
MN	Microstrip					0.500		0.008 ±0.001
AN	Axial Ribbon		0.250 ± 0.015 (6.35 ± 0.38)	0.4.70		(12.70) min	(6.1 ± 0.13)	(0.2 ± 0.025)
FN	Radial Ribbon	0.245 ± 0.025 (6.22 ± 0.64)		0.150 (3.81) max		0.354 (9.00) min	$0.118 \pm 0.005 \\ (3.0 \pm 0.13)$	$0.012 \pm 0.001 \\ (0.3 \pm 0.025)$
RN	Radial Wire					0.709 (18.00) min	_ Dia. = 0.0	031 ±0.004
BN	Axial Wire					0.906 (23.00) min	(0.80	±0.10)

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

RF & Microwave Components

‡ Electrical Specifications

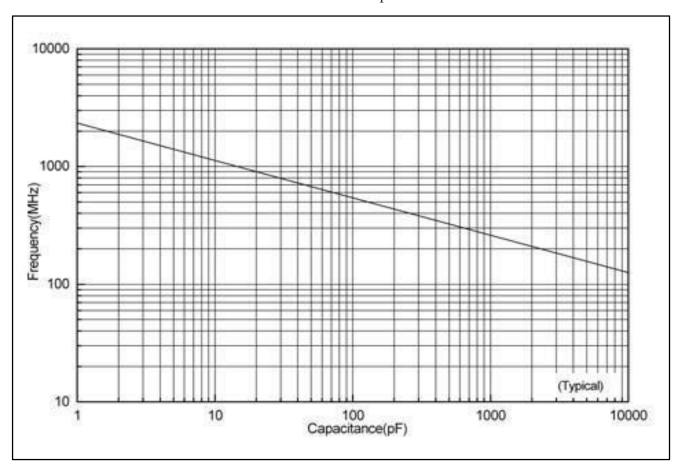
Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 120%="" 1250="" 5="" for="" of="" rated="" seconds,="" vdc="" voltage="" ≤=""> 1250 VDC</rated>
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

Environmental Specifications

www.passiveplus.com

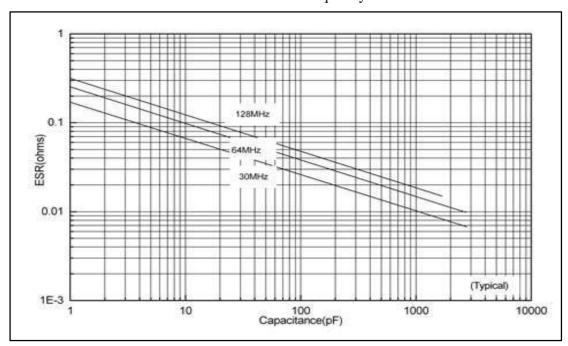
n
I


Test Parameters

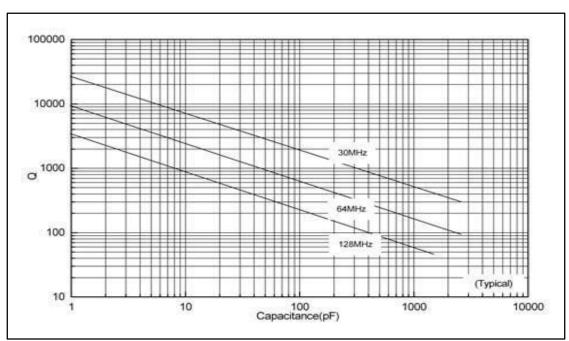
	•	
Thermal Shock	DWV: The initial Value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial Value IR: The initial value. Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value.Capacitance Change:No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 20lbs typical, 10lbs. Minimum. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

Series Resonance vs. Capacitance

Series Resonance vs. Capacitance

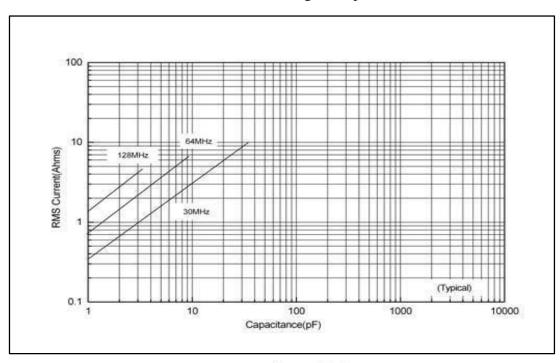


www.passiveplus.com


= ESR vs. Frequency

2225C/P ESR vs Frequency

≠ Q vs. Capacitance


Q vs Capacitance

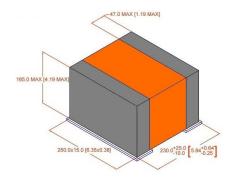
🗲 Current Rating vs. Capacitance

2225C/P Current Rating vs Capacitance

The current depends on voltage limited: $I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_0} = \sqrt{2} \pi V V_{rated}$

The current depends on power dissipation limited: $I = \sqrt{\frac{P_{dissipation}}{FSR}}$

Note: If the thermal resistance of mounting surface is 15°C/W, then a power dissipation of 4W will result in the current limited.


We can calculate the current limited.

‡ Capacitor Application Program

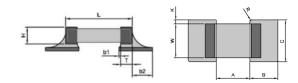
Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

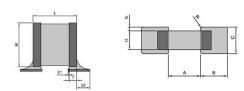
To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

 $2225C/P (0.220" \times 0.250"$

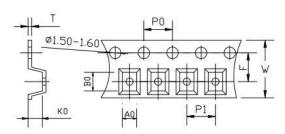

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.
- 2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


Horizontal Mounting (mm)

A	В	C
3.9	2.5	7.0


Vertical Mounting (mm)

A	В	C
3.9	2.5	4.0

Tape & Reel Specifications (mm)

Horizontal Orientation

Case Size	Orientation	Measurement Unit	W	Р0	P1	T	F	Minimum Qty per Reel	Std Qty per Reel	Tape Material
	Н	in.	0.630	0.157	0.472	0.012	0.295	500	500	Plastic
2225CP		mm	16.00	4.00	12.00	0.30	7.50	300	300	Flastic
2223CF =	V	in.	0.630	0.157	0.315	0.020	0.295	500	500	Plastic
	V	mm	16.00	4.00	8.00	0.50	7.50	300		

$A_0 B_0 K_0$

- Determined by component size. Typical clearance between the cavity and the component is: .05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.
- The component cannot rotate more than 20° within the determined cavity.

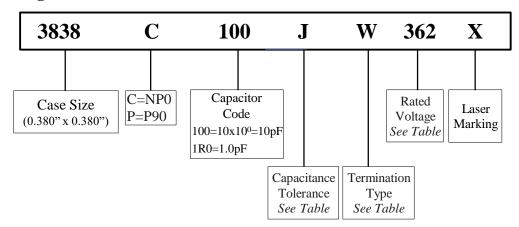
Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 0.5pF to 5100pF
- Working Voltage: 3600V
- Extended Voltage: 7200V

† Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- D.C. Blocking Impedance Matching


Typical Circuit Applications

• HF/ RF Power Amplifiers • Antenna Tuning • Plasma Chambers • Medical Equipment • Transmitters

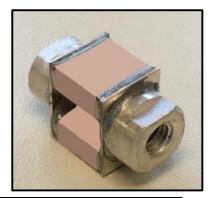
Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

≠ Capacitance Tolerance Codes

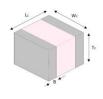
Code	A	В	C	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Voltage Codes

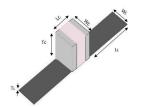

Voltage	Code
500V	501
1000V	102
2500V	252
3600V	362
7200V	722

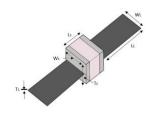
≠ 3838C/P Capacitance Values

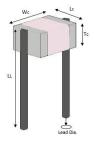
Special capacitances, tolerances and WVDC are available. Please contact PPI.



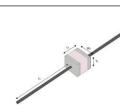
Cap.	Cap Code	Tol.	Rated Std.		Cap.	Cap Code	Tol.	Rated WVDC Std. Ext.	Cap.	Cap Code	Tol.		WVDC Ext.	Сар.	Cap Code	Tol.	Rated WVDC
pF 0.5	OR5		Stu.	EXI.	pF 4.7	4R7		Stu. Ext.	51	510		Stu.	EXI.	pF 560	561		WVDC
0.6	OR6				5.1	5R1			56	560				620	621	F,G,	
0.7	OR7				5.6	5R6			62	620				680	681	J,K	2500V
0.8	OR8				6.2	6R2	B,C,		68	680				750	751		
0.9	OR9				6.8	6R8	D,c,	3600V 7200V	75	750				820	821		
1.0	1R0				7.5	7R5			82	820				910	911		
1.1	1R1				8.2	8R2			91	910	F,G,			1000	102		
1.2	1R2				9.1	9R1			100	101	J,K	3600V	7200V	1100	112		
1.3	1R3				10	100			110	111				1200	122	F,G,	1000V
1.4	1R4				11	110			120	121				1500	152	J,K	
1.5	1R5				12	120			130	131				1800	182		
1.6	1R6				13	130			150	151				2200	222		
1.7	1R7	B,C, D	3600V	7200V	15	150			160	161				2400	242		
1.8	1R8	U			16	160			180	181				2700	272		
1.9	1R9			18	180			200	201				3000	302			
2.0	2R0				20	200			220	221				3300	332		
2.1	2R1				22	220	F,G, J,K	3600V 7200V	240	241				3600	362	F,G,	5001
2.2	2R2				24	240	J,K		270	271	F,G,	26001	N1 / A	3900	392	J,K	500V
2.4	2R4				27	270			300	301	J,K	3600V	N/A	4300	432		
2.7	2R7				30	300			330	331				4700	472		
3.0	3R0				33	330			360	361				5100	512		
3.3	3R3				36	360			390	391							
3.6	3R6				39	390			430	431							
3.9	3R9				43	430			470	471	F,G, J,K	2500V	N/A				
4.3	4R3				47	470			510	511	٠,						




Termination Types and Codes


Chip Termination: Codes: W, L, P


Microstrip Termination: Codes: MS, MN


Axial Ribbon Termination: Code: AR, AN

Radial Wire Termination: Codes: RW, RN

Radial Ribbon Termination: Code: RR, FN

Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination
W ROHS	100% Sn Solder over Nickel Plating
L	90% Sn10%Pb Tin/Lead Solder over Nickel Plating
MS ROHS	
AR ROHS	_
RR KOHS	Silver-Plated Copper
RW ROHS	_
AW ROHS	

Termination Code	Non-Magnetic Terminations
P one	100%Sn Solder over Copper Plating
MN ROHS	
AN ROHS	
FN ROHS	Silver-Plated Copper
RN vons	
BN RoHS	

Note: "Non-Magnetic" means no magnetic materials.

Termination Types For Termination Types images, see previous page

Unit: inch (millimeter)

	Magnetic Terminations							
			Capacitor Dia	Lead Dimensions				
		Length	Width	Thickness	Overlap	Length	Width	Thickness
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL
W	Chip	0.380 -0.010+0.015 (9.65 - 0.25+0.38)	0.380 ±0.010 (9.65±0.25)	0.170 (4.32) max	0.024~0.059 (0.60~1.50)			
MS	Microstrip					0.728	0.350 ± 0.020 (8.89±0.50)	0.008±0.001
AR	Axial Ribbon	0.380	0.380	0.455		(18.50) min	0.315±0.010 (8.00±0.25)	(0.20 ± 0.025)
RR	Radial Ribbon	-0.010.+0.015 (9.65	±0.010 (9.65	0.177 (4.50)		0.354 (9.00) min	0.118 ± 0.010 (3.0 ± 0.25)	0.012 ± 0.001 (0.3 ± 0.025)
RW	Radial Wire	-0.25+0.38)	±0.25)	max		0.709 (18.00) min	Dia.: 0.031±0	0.004
AW	Axial Wire					0.906 (23.00) min	(0.80 ± 0.00)	0.10)
			🐼 Non	-Magnetic	Terminatio	on: 🐼		
			Capa	citor Dimens	sions		Lead Dimensio	ns
		Length	Width	Thickness	Overlap	Length	Width	Thickness
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL
P	Chip	0.380 -0.010+0.015 (9.65 - 0.25+0.38)	0.380 ±0.010 (9.65±0.25)	0.170 (4.32) max	0.024~0.059 (0.60~1.50)			
MN	Microstrip					0.728	0.350 ± 0.020 (8.89±0.50)	0.008 ± 0.001
AN	Axial Ribbon	0.380 -0.010+0.015	0.380 ±0.010	0.177		(18.50) min	0.315±0.010 (8.00±0.25)	(0.20 ± 0.025)
FN	Radial Ribbon	(9.65	(9.65	(4.50) max		0.354 (9.00) min	0.118 ± 0.010 (3.0 ± 0.25)	$0.012 \pm 0.001 \\ (0.3 \pm 0.025)$
RN	Radial Wire	-0.25+0.38)	±0.25)	ших		0.709 (18.00) min		
BN	Axial Wire					0.906 (23.00) min	(0.80 ± 0.00)	.10)

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

Electrical Specifications

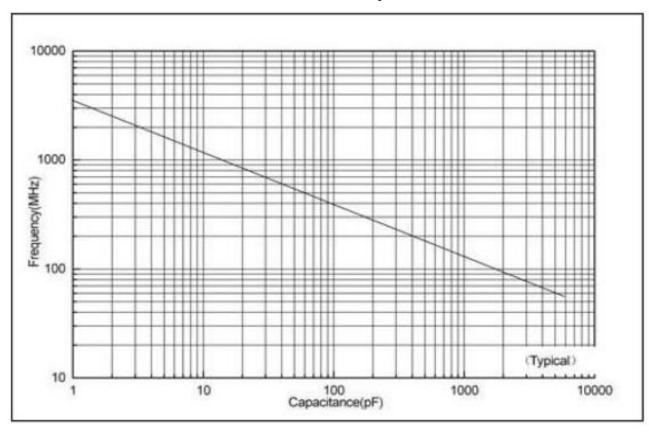
Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 120%="" 1250="" 5="" for="" of="" rated="" seconds,="" vdc="" voltage="" ≤=""> 1250 VDC</rated>
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

‡ Environmental Specifications

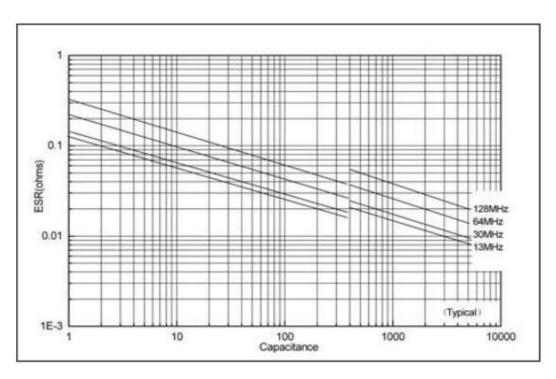
Specification

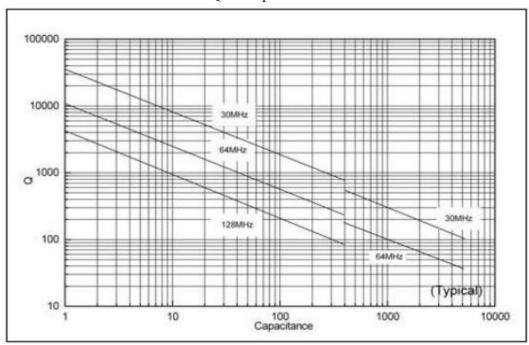
Test Parameters

Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 20lbs typical, 10lbs. min. Duration Time: 5 to 10 seconds	

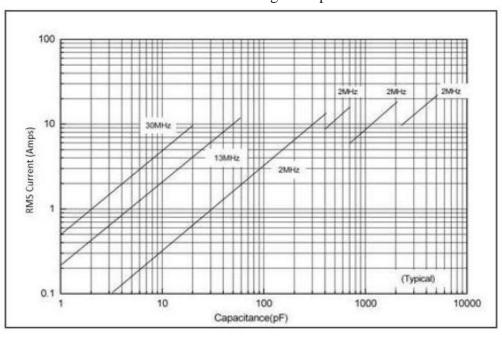

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

≠ Series Resonance vs. Capacitance


Series Resonance vs. Capacitance


= ESR vs. Frequency

ESR vs Frequency


≠ Q vs. Capacitance

Q vs Capacitance

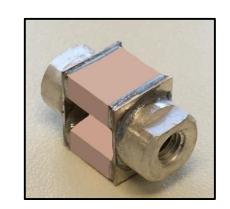
Current Rating vs. Capacitance

3838C/P Current Rating vs Capacitance

The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_{o}} = \sqrt{2} \pi F C V_{rated}$$

The current depends on power dissipation limited:


$$I = \sqrt{\frac{P_{dissipation}}{ESR}}$$

Note: If the thermal resistance of mounting surface is 12°C/W, then a power dissipation of 5W will result in the current limited. We can calculate the current limited.

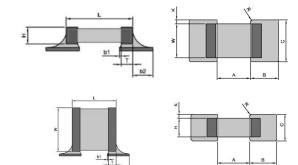
Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

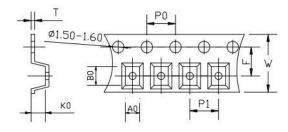
Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.


- 1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.
- 2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Horizontal Mounting (mm)

A	В	C
7.1	3.0	10.2



A	В	C
7.1	3.0	5.0

Tape & Reel Specifications (mm)

Horizontal Orientation

Orientation	W	P0	P1	T	F	Qty Min	Qty/ reel	Tape Material
Horizontal	16.00	4.00	12.00	0.30	7.50	50	200	Plastic

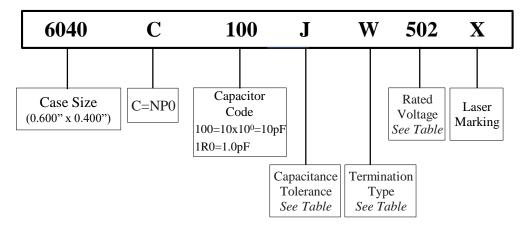
 $A_0 B_0 K_0$

- Determined by component size. Typical clearance between the cavity and the component is: .05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.
- The component cannot rotate more than 20° within the determined cavity.

6040C (0.600" x 0.400")

Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 1.0pF to 6800pF
- Working Voltage: 5000VExtended Voltage: 8000V


‡ Typical Circuit Applications

- Semiconductor Manufacturing
- High Energy Power Transfers
- Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

‡ Part Numbering

≠ Capacitance Tolerance Codes

Code	В	C	D	F	G	J	K
Tol.	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

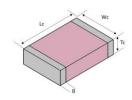
≠ Voltage Codes

Voltage	Code
1000V	102
2000V	202
3000V	302
5000V	502
8000V	802

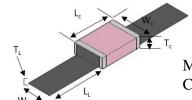
6040C (0.600" x 0.400")

6040C Capacitance Values

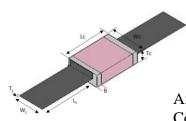
For special capacitances, tolerances and WVDC, please contact PPI.

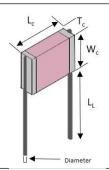

Marking shown for illustration purposes only. Actual marking may differ.

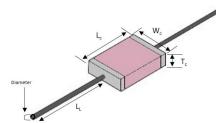
Cap.	Сар	Tol.	Rated WVD		Сар	Tol.		WVDC	Cap.	Сар	Tol.		WVDC
pF	Code		Std. Ext.	pF	Code	1	Std.	Ext.	pF	Code		Std.	Ext.
1.0	1R0			39	390				1500	152	F,G,		
1.2	1R2			47	470				1800	182	J,K	2000V	3000V
1.5	1R5			56	560	F,G,	5000\/	8000V	2200	222	ŕ		
1.8	1R8			68	680	J,K	J000V	8000 V	2700	272			
2.2	2R2			82	820				3300	332			
2.7	2R7	B,C,	5000V 8000	100	101				4700	472	F,G,	1000V	2000V
3.3	3R3	D	30007 8000	120	121				5100	512	J,K	10000	2000V
3.9	3R9			150	151				5600	562			
4.7	4R7			180	181				6800	682			
5.6	5R6			220	221								
6.8	6R8			270	271	F,G,	20001	E000\/					
8.2	8R2			330	331	J,K	3000V	5000V					
10	100			390	391								
12	120			470	471								
15	150			560	561								
18	180	F,G, J,K	5000V 8000	V 680	681								
22	220	J,IX		820	821								
27	270			1000	102	F,G, J,K	2000V	3000V					
33	330			1200	122	J, K							



6040C (0.600" x 0.400")


÷ Termination Types and Codes


Chip Termination: Codes: W, L, P


Microstrip Termination: Codes: MS, MN

Axial Ribbon Termination: Code: AR, AN

Radial Wire Termination: Codes: RW, RN

Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination
w 🗸	100% Sn
V V RôHS	Solder over Nickel Plating
L	90% Sn10%Pb Tin/Lead Solder over Nickel Plating
MS ROHS	_
AR ROHS	Silver-Plated Copper
RW ROHS	-
AW ROHS	

Terminat Code		Non-Magnetic Terminations
P	RoHS	100% Sn Solder over Copper Plating
MN	RoHS	
AN	RoHS	Silver-Plated Copper
RN	RoHS	Silver-r lated Copper
BN	RoHS	

Note: "Non-Magnetic" means no magnetic materials.

6040C (0.600" x 0.400")

Terminations

For Termination Types images, see previous page

Unit: inch (millimeter)

			М	agnetic Termi	nations				
	Capacitor Dimensions						Lead Dimensions		
		Length	Width	Thickness	Overlap	Length	Width	Thickness	
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL	
W	Chip	0.614 -0.010+0.015 (15.6 -0.25+0.38)	0.433±0.010 (11.0±0.25)	0.154±0.008 (3.90±0.20) max	0.063 (1.60) max	F	-	-	
MS	Microstrip					0.787	0.350 ± 0.010	0.008±0.001	
AR	Axial Ribbon	0.614 -0.010+0.015	0.433±0.010	0.154±0.008		(20.0) min	(8.89±0.25)	(0.20 ± 0.025)	
RW	Radial Wire	(15.6 -0.25+0.38)	(11.0±0.25)	(3.90±0.20) max	-	0.787 (20.00) min	Dia.: 0.030±0		
AW	Axial Wire					0.984 (25.00) min	$(0.80 \pm 0$	0.10)	
	Non-Magnetic Terminations								
			Capacitor Dia	nensions		1	Lead Dimension	s	
		Length	Width	Thickness	Overlap	Length	Width	Thickness	
Code	Term.	Lc	Wc	Tc					
				10	В	LL	WL	TL	
P	Chip	0.614 -0.010+0.015 (15.6 -0.25+0.38)	0.433±0.010 (11.0±0.25)	0.154±0.008 (3.90±0.20) max	0.063 (1.60) max	LL -	WL -	TL -	
P MN	Chip	-0.010+0.015	0.433±0.010	0.154±0.008 (3.90±0.20)	0.063 (1.60)	-	-	-	
		-0.010+0.015 (15.6 -0.25+0.38)	0.433±0.010	0.154±0.008 (3.90±0.20)	0.063 (1.60)	0.787 (20.0) min	WL $-$ 0.350 ± 0.010 (8.89±0.25)	TL $0.008 \pm 0.001 \\ (0.20 \pm 0.025)$	
MN	Microstrip Axial	-0.010+0.015 (15.6 -0.25+0.38) - - - - - - - - - - - - - - - - - - -	0.433±0.010 (11.0±0.25)	0.154±0.008 (3.90±0.20) max	0.063 (1.60)	0.787	- 0.350 ± 0.010	$- \\ 0.008 \pm 0.001 \\ (0.20 \pm 0.025)$	

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

6040C (0.600" x 0.400")

Electrical Specifications

Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test Frequency 1MHz; More than 1000pF, Q value more than 2000, Test Frequency 1MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (WVDC)	250% of Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 1250="" vdc<br="" voltage="" ≤="">120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>
Operating Temperature Range	-55°C to 175°C
Temperature Coefficient (TC)	-55°C to 125°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

÷ Environmental Specifications

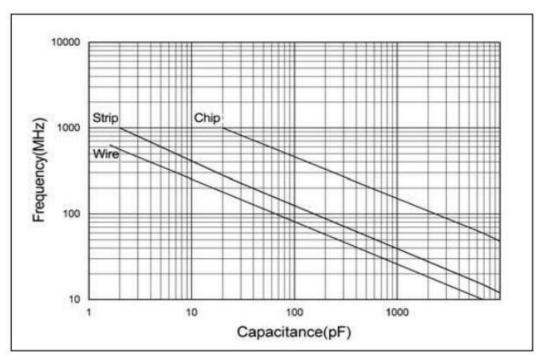
www.passiveplus.com

Specification

Test Parameters

Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 125°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Harea /Sinc typical /lline min	

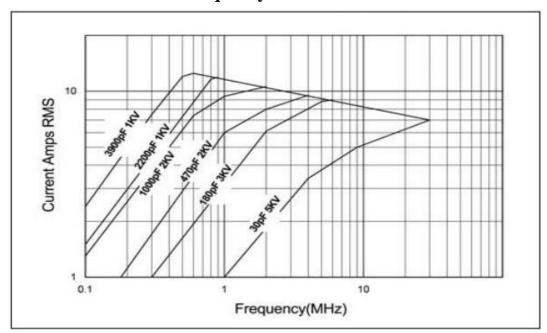
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

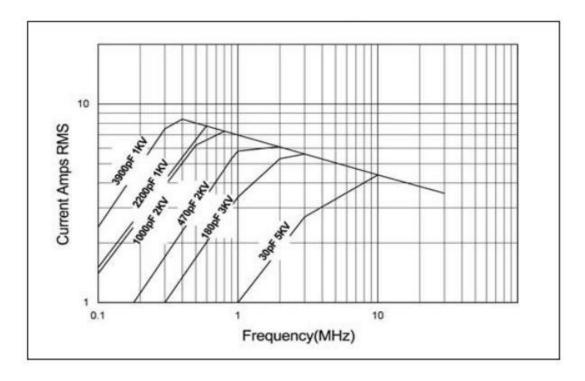


6040C (0.600" x 0.400")

ESR vs. Capacitance Measured @ 30MHz

≠ Self Resonant Frequency vs. Capacitance

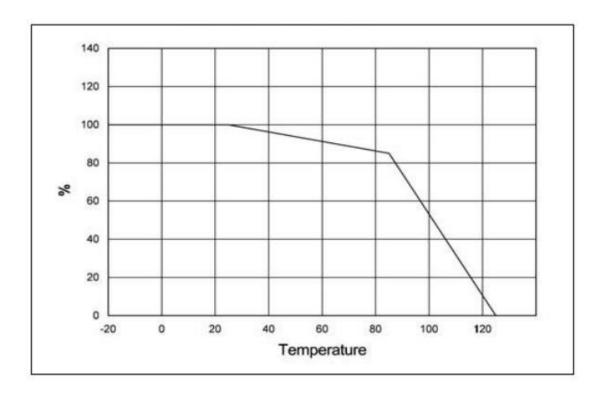




6040C (0.600" x 0.400")

Strip Terminals Rated Current vs. Frequency

≠ Wire Terminals Rated Current vs. Frequency



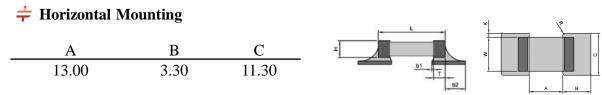
6040C (0.600" x 0.400")

🗦 % Maximum Current vs. Ambient Temperature

Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.



6040C (0.600" x 0.400")

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.
- 2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Dimensions: mm

7676C (0.760" x 0.760")

Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 1.0pF to 20000pF
- Working Voltage: 5000V
- Extended Voltage: 8000V

† Typical Circuit Applications

- Semiconductor Manufacturing
- High Energy Power Transfers
- Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

‡ Capacitance Tolerance Codes

Code	В	C	D	F	G	J	K
Tol.	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

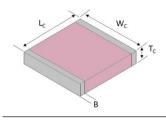
Voltage Codes

Voltage	Code
1000V	102
2000V	202
3000V	302
5000V	502
8000V	802

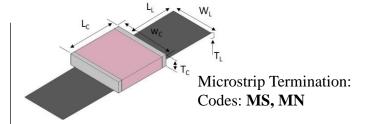
7676C (0.760" x 0.760")

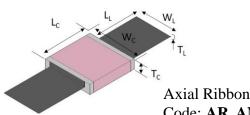
≠ 7676C Capacitance Values

Special capacitances, tolerances and WVDC are available. Please contact PPI.

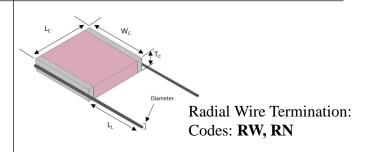

Marking shown for illustration purposes only. Actual marking may differ.

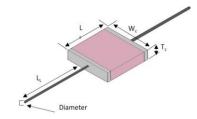
Cap.	Сар	Tal	Rated	WVDC	Cap.	Сар	T-1	Rated	WVDC	Cap.	Сар	T-1	Rated	WVDC						
рF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.						
1.0	1R0				33	330				1000	102									
1.2	1R2				39	390				1200	122									
1.5	1R5				47	470				1500	152									
1.8	1R8				56	560				1800	182	C 1								
2.2	2R2				68	680	F. C			2200	222	G,J, K	3000V	5000V						
2.7	2R7	B,C,	5000\/	8000V	82	820	F,G, J,K	5000V	8000V	2700	272									
3.3	3R3	D	3000	30000	D 3000 V	30001	3000	30000	3000 0000	0000 V	100	101	,			3300	332			
3.9	3R9				120	121				4700	472									
4.7	4R7				150	151				5100	512									
5.6	5R6									180	181			5600	562					
6.8	6R8													220	221				6800	682
8.2	8R2				270	271				7500	752	G,J, K	1000V	3000V						
10	100				300	301				8200	822									
12	120				390	391	F. C			10000	103									
15	150	F,G,	5000\/	8000V	470	471	F,G, J,K	3000V	5000V	12000	123									
18	180	J,K	3000V	3000 V	560	561				15000	153	G,J,	1000\/	2000V						
22	220				680	681				18000	183	K	10000	20000						
27	270				820	821				20000	203									




7676C (0.760" x 0.760")

‡ Termination Types and Codes




Chip Termination: Codes: W, L, P

Axial Ribbon Termination: Code: AR, AN

Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination			
W Rohs	100% Sn Solder over Nickel Plating			
L	90% Sn10%Pb Tin/Lead Solder over Nickel Plating			
MS ROHS	_			
AR ROHS	- Silver-Plated Copper			
RW KOHS	-			
\mathbf{AW}	_			

Termination Code	⊗ Non-Magnetic ⊗ Terminations				
P ROHS	100% Sn Solder over Copper Plating				
MN ROHS					
AN ROHS	Cilcan District Common				
RN ROHS	Silver-Plated Copper				
BN ROHS	•				

Note: "Non-Magnetic" means no magnetic materials.

7676C (0.760" x 0.760")

Termination Types For Termination Types images, see previous page

Unit: inch (millimeter)

Magnetic Terminations									
			Capacitor Dia	mensions			Lead Dimension	ıs	
		Length	Width	Thickness	Overlap	Length	Width	Thickness	
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL	
W	Chip					-	-	-	
MS	Microstrip		0.760±0.010 (19.3±0.25)	0.154±0.008 (3.90±0.20) max	0.063 (1.60) max	0.787	0.591 ± 0.010	0.008±0.001	
AR	Axial Ribbon	0.760 -0.010+0.015 (19.3 -0.25+0.38)				(20.0) min	(15.0±0.25)	(0.20 ± 0.025)	
RW	Radial Wire	(17.3 0.23 0.30)			max	0.787 (20.00) min	Dia.: 0.030±0.004		
AW	Axial Wire						(0.80 ± 0.10)		
			Non	-Magnetic Te	rminations	⊘			
			Capacitor Dia	mensions			Lead Dimension	ıs	
		Length	Width	Thickness	Overlap	Length	Width	Thickness	
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL	
P	Chip					-	-	-	
MN	Microstrip					0.707	0.501 + 0.010	010 000 000	
AN	Axial Ribbon	0.760 -0.010+0.015 (19.3 -0.25+0.38)	0.760±0.010 (19.3±0.25)	0.154±0.008 (3.90±0.20)	0.063 (1.60) max	0.787 (20.0) min	0.591 ± 0.010 (15.0±0.25)	0.008 ± 0.001 (0.20 ± 0.025)	
RN	Radial Wire		max			0.787 (20.00) min	- Dia.: 0.031 ±0	.004	
BN	Axial Wire					1.181 (30.00) min	$(0.80 \pm 0.$		

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

7676C (0.760" x 0.760")

Electrical Specifications

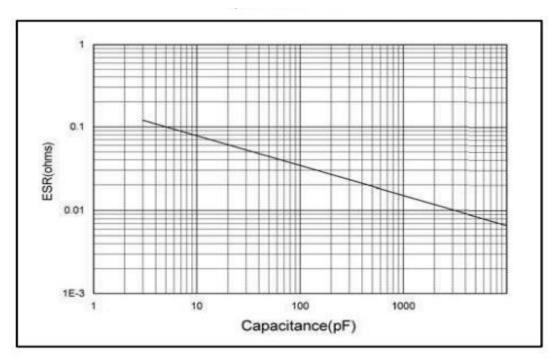
Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test Frequency 1MHz; More than 1000pF, Q value more than 2000, Test Frequency 1MHz				
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC				
Rated Voltage	See Rated Voltage Table				
Dielectric Withstanding Voltage (WVDC)	250% of Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 1250="" vdc<br="" voltage="" ≤="">120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>				
Operating Temperature Range	-55°C to 175°C				
Temperature Coefficient (TC)	-55°C to 125°C				
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater				
Piezoelectric Effects	None				
Termination Type	See Termination Type Table				

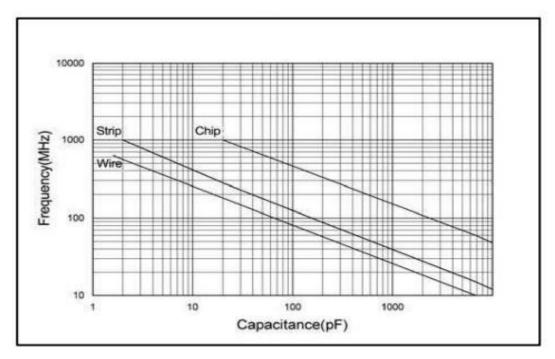
‡ Environmental Specifications

Specification

Test Parameters

Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 125°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 30lbs. min. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

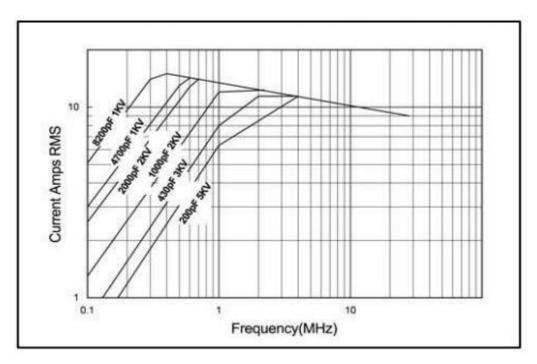

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

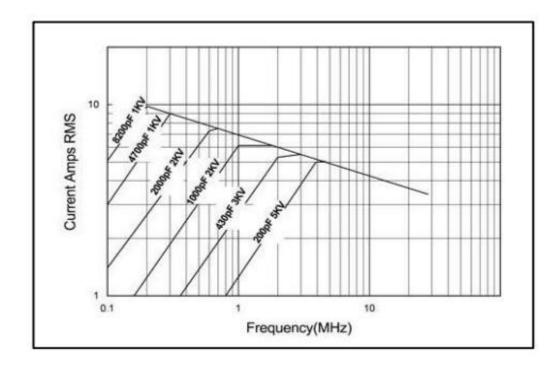


7676C (0.760" x 0.760")

ESR vs. Capacitance Measured @ 30MHz

≠ Self Resonant Frequency vs. Capacitance

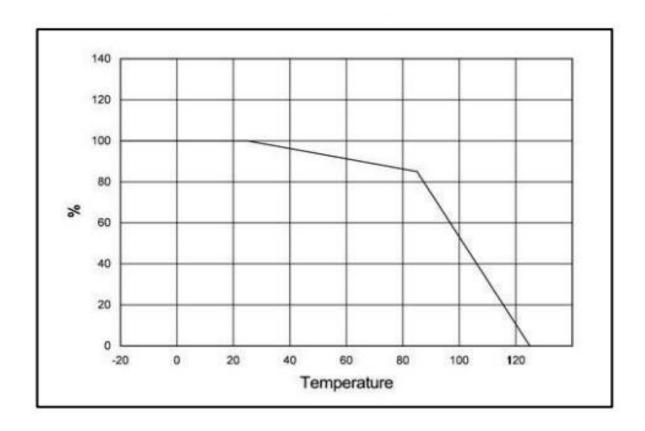




 $7676C (0.760" \times 0.760")$

Strip Terminals Rated Current vs. Frequency

Wire Terminals Rated Current vs. Frequency



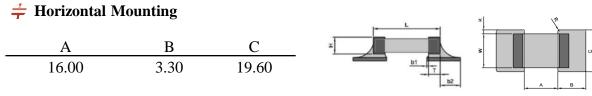
7676C (0.760" x 0.760")

% Maximum Current vs. Ambient Temperature

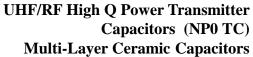
Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.



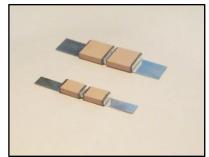
7676C (0.760" x 0.760")

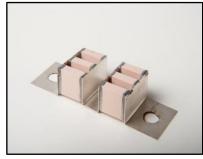

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.
- 2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Dimensions: mm





Marking shown for illustration purposes only. Actual marking may differ.

Please contact PPI (sales@passiveplus.com) to discuss custom assembly options.

Custom Capacitor Assemblies

Product Features

High Operating Voltage, High Operating Current, Extended Capacitance, Tighter Tolerances, High Reliability, High Q, Ultra-low ESR, Non-Magnetic


† Typical Applications Field

High Power RF, Medical Electronics, Broadcast, Semiconductor Manufacturing, High Magnetic Environments, Inductive Heating

Marking shown for illustration purposes only Actual marking may differ.

Part Numbering

Capacitor Size:

11P = 1111; 22P = 2225; 38P =3838; 60P = 6040; 76P = 7676

Capacitance: For capacitor values requiring 3 significant digits,

e.g. 1222.5pF = 1222R5

e.g. P6S22P101F252X

Silver bracket assembly with six 2225C pieces in parallel, Capacitance is 100pF, Capacitance tolerance is ±1%, WVDC is 2500 V and Laser marking.

e.g. S2S25C1222R5G203X

Silver bracket assembly with two 2225C pieces in series, Capacitance is 1222.5pF, Capacitance tolerance is ±2%, WVDC is 20,000V and Laser marking.

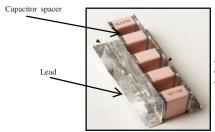
Capacitance and Voltage

By Buyer's requirements using existing drawings, mechanical sketches, or we can help with capable modeling of assemblies thermal rise predictions.

sales@passiveplus.com

Custom Capacitor Assemblies

† Typical Assembly Configurations


≠Parallel Assemblies

unit:inch (millimeter)

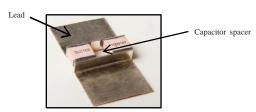
	1111C/P	22225C/P	3838C/P	6040C	7676C	
Lead Material	Silver plated Copper or Silver					
Lead Thickness	.004 or .010 (0.1 or 0.25)			.010 or .020 (0.25 or 0.51)		
Lead Length (max.)	.50 (12.7)	.75 (19.8)	2.0 (50.8)		
Capacitor Spacer (typ.)	.050 or .078 (1.3 or 2)		:2)	.090 (2.3)	.050 or .157 (1.3 or 4)	

Mounting Configuration

Horizontal / Vertical

Marking shown for illustration purposes only. Actual marking may differ.

Series Assemblies


unit:inch (millimeter)

	22225C/P	3838C/P	6040C	7676C		
Lead Type	acket					
Lead Material	Silver plated Copper or Silver					
Lead Thickness	.010	(0.25)	.010 or .020	(0.25 or 0.51)		
Lead Length (max.)	.75 (19.8) 1.0 (25.4)					
Capacitor Spacer (typ.)	.050 or .157 (1.3 or 4)					
Mounting Configuration	Horizontal					

• Epoxy Molding Available

Other Assemblies: By Buyer's requirement. Contact PPI.

Marking shown for illustration purposes only. Actual marking may differ.

