
RF & MICROWAVE COMPONENTS

Passive Plus, Inc. (PPI) specializes in Magnetic & Non-Magnetic HI-Q Components, supplying reliable quality components to the Aerospace, Telecommunications, Medical Semiconductor, and Military industries.

Marking shown for illustration purposes only. Actual marking may differ.

PPI is an American (New York), Woman owned Business.

- PPI is ISO9001:2015 certified.
- S level reliability
- Mil C 55681
- Mil C 123
- EAR 99 Compliant
- No ITAR Issues
- Export Compliant
- RoHS and REACH Compliant

PPI has been audited by some of the largest and most successful companies in the world and has received extremely high audit ratings. We believe our audit ratings are best in class. PPI is known for Outstanding Customer Service and RF Engineering Support.

Marking shown for illustration purposes only.

Actual marking may differ.

Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance

+ Product Applications


Typical Functional Applications:

- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications:

- UHF/Microwave RF Power Amplifiers •
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines

Case Size (Chip) Dimensions

	0505	1111	2225	3838	6040	7676
Length (L _c)	0.055 + 0.015 to -0.010 (1.40 +0.38 to -0.25)	0.110 + 0.020 to -0.010 (2.79 +0.51 to -0.25)	0.225 -0.010+0.25 (5.72 -0.25+ 0.64)	0.380 -0.010+0.015 (9.65 -0.25+0.38)	0.614 -0.010+0.015 (15.6 -0.25+0.38)	0.760 -0.010+0.015 (19.3 -0.25+0.38)
Width (W _c)	0.055 ± .010 (1.40 ±0.25)	$\begin{array}{c} 0.110 \pm 0.010 \\ (2.79 \pm 0.25) \end{array}$	$\begin{array}{c} 0.250 \pm 0.015 \\ (6.35 \pm 0.38) \end{array}$	0.380 ± 0.010 (9.65±0.25)	0.433±0.010 (11.0±0.25)	0.760±0.010 (19.3±0.25)
Thickness (T _c)	0.057 (1.45 max)	0.10 (2.54 max)	0.165 (4.19) max	0.170 (4.32) max	0.154±0.008 (3.90±0.20) max	0.154±0.008 (3.90±0.20) max
Overlap (B)	0.02 (0.51max)	0.024 (0.60max)	0.020~0.047 (0.50~1.20) max	0.024~0.059 (0.60~1.50)	0.063 (1.60) max	0.063 (1.60) max

www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com PPICPINTROPAGES051222RevA

† Temperature Coefficient

C: -55°C to 125°C 0±30ppm/°C; >125 °C to 200°C 0±60ppm/°C P: +90±20ppm/°C

Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10

† Tolerance

	Capacitance Tolerance									
Code	А	В	С	D	F	G	J	K		
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%		

Formination Types and Codes

		Magnetic			\bigotimes	Non-Magne	tic 🔗
Termina Code		Туре	Magnetic Termination	Termina Code		Туре	Non-Magnetic Terminations
W	RoHS	Chip	100% Sn Solder over Nickel Plating	Р	RoHS	Chip	100% Sn Solder over Copper Plating
L		Chip	90% Sn10%Pb Tin/Lead Solder	MN	ROHS	Microstrip	
		-	over Nickel Plating	AN	ROHS	Axial Ribbon	– Silver-Plated
MS	RoHS	Microstrip		FN	ROHS	Radial Ribbon	Copper
AR	RoHS	Axial Ribbon	- 1	RN	ROHS	Axial Wire	-
RR	RoHS	Radial Ribbon	Silver-Plated Copper	BN	ROHS	Radial Wire	_
RW	RoHS	Axial Wire					_
AW	RoHS	Radial Wire					

+1 (631) 425-0938

÷ Voltages

Code	Rated Voltage	Code	Rated Voltage
500	50V	152	1500V
101	100V	202	2000V
151	150V	252	2500V
201	200V	302	3000V
301	300V	362	3600V
501	500V	502	5000V
102	1000V	722	7200V

‡ Laser Marking

An "X" at the end of the part number indicates the part is marked.

Packing Orientation Option

TV: Tape carrier packaging Vertical Orientation.

Vertical orientation means that if the part is lifted from the tape without any rotation and placed on a substrate, its electrodes will be perpendicular to the substrate plane. This impacts the frequency of First Parallel Resonance (suckout).

Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

All products are in compliance with RoHS instruction.

+1 (631) 425-0938

0505C/P (0.055" x 0.055")

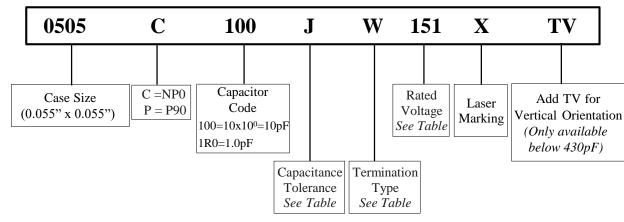
Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 0.1pF to 1000pF
- Working Voltage: 150V
- Extended Voltage: 300V

Part Numbering

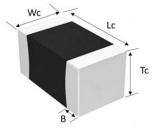
F **Product Applications**

Typical Functional Applications:


- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications:

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits
- and Delay Lines


Marking shown for illustration purposes only. Actual marking may differ.

Capacitor Dimensions

Unit: inch (millimeter)

Length	Width	Thickness	Overlap
Lc	Wc	Тс	В
0.055 + 0.015 to -0.010 (1.40 +0.38 to -0.25)	$\begin{array}{c} 0.055 \pm .010 \\ (1.40 \pm 0.25) \end{array}$	0.057 (1.45 max)	0.020 (0.51max)

Temperature Coefficient

- **C**: -55° to 125° C 0 ± 30 ppm/°C;
 - $>125^{\circ}C$ to $200^{\circ}C$ 0 ± 60 ppm/ $^{\circ}C$
- **P**: ±90 ±20ppm/°C

sales@passiveplus.com PPI0505CPData051622RevA

0505C/P (0.055" x 0.055")

≠ 0505C/P Capacitance Values

- NP0=C; P90=P
- Maximum Capacitance: 0505P=100pF; 0505C=1000pF
- * Available in NP0 only.

Special capacitances, tolerances and WVDC are available. Please contact PPI.

Cap.	Сар		Rated	WVDC	Cap.	Cap		Rated	WVDC	Cap.	Cap		Rated	WVDC	Cap.	Сар		Rated	WVDC						
pF	Code	Tol.	Std.	Ext.	pF	Code	Tol.	Std.	Ext.	pF	Code	Tol.	Std.	Ext.	pF	Code	Tol.	Std.	Ext.						
0.1	0R1				2.4	2R4				20	200				160	161*									
0.2	OR2				2.7	2R7				22	220				180	181*									
0.3	OR3				3.0	3R0				24	240				200	201*									
0.4	0R4				3.3	3R3				27	270				220	221*	F,G,	150V	200V						
0.5	OR5				3.6	3R6				30	300	F,G,		250V	240	241*	J,K								
0.6	OR6				3.9	3R9				33	330	J,K	150V	or	270	271*									
0.0	OR7				4.3	4R3			0.5 O. I	36	360			300V	300	301*									
	0R7					-	А,В,	150V	250V or							331*									
0.8					4.7	4R7	C,D	1300	300V	39	390				330										
0.9	0R9				5.1	5R1										43	430				360	361*			
1.0	1R0			250V	5.6	5R6				47	470				390	391*									
1.1	1R1	A,B,	150V	or	6.2	6R2				51	510				430	431*	F,G, J,K	150V	N/A						
1.2	1R2	C,D		300V	6.8	6R8				56	560				470	471*	J,K								
1.3	1R3				7.5	7R5				62	620				510	511*									
1.4	1R4				8.2	8R2				68	680				560	561*									
1.5	1R5				9.1	9R1				75	750				620	621*									
1.6	1R6				10	100				82	820	F,G,	150V	200V	680	681*									
1.7	1R7				11	110				91	910	J,K	1500	200 V	750	751*									
1.8	1R8				12	120			250V	100	101				820	821*	F,G, J,K	50V	100V						
1.9	1R9				13	130	F,G, J,K	150V	or	110	111*				910	911*	<u>ј,</u> к								
2.0	2R0				15	150),К		300V	120	121*				1000	102*									
2.1	2R1				16	160				130	131*														
2.2	2R2				18	180				150	151*														

*Available in NP0 only

0505C/P (0.055" x 0.055")

‡ Capacitance Tolerance Codes

Code	Α	В	С	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

† Termination Types

Termination Code		Termination	
W		100% Sn	-
		Solder over Nickel Plating	RoHS
		90% Sn10%Pb	
\mathbf{L}		Tin/Lead	
		Solder over Nickel Plating	
P (Non-Magnetic)	\bigotimes	100% Sn Solder over Copper Plating	RoHS

Note: "Non-Magnetic" means no magnetic materials.

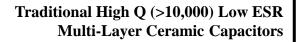
Voltage Codes

Voltage	Code
50V	500
100V	101
150V	151
200V	201
250V	251
300V	301

0505C/P (0.055" x 0.055")

÷ Electrical Specifications

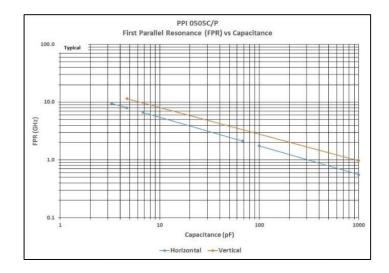
Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	10 ⁵ MegaOhms min. @ +25°C rated WVDC 10 ⁴ MegaOhms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C 0±30ppm/°C; >125°C to 200°C 0±60ppm/°C P: +90±20ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table


Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

÷ Environmental Specifications

	Specification	Test Parameters
Thermal Shock	DWV: The initial Value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial Value IR: The initial value. Capacitance Change: No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 200°C. Rated Voltage DC applies.
Terminal Strength	Force: 10lbs typical, 5lbs. Minimum. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

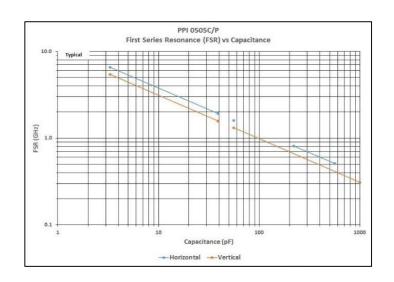
sales@passiveplus.com PPI0505CPData051622RevA


0505C/P (0.055" x 0.055")

FPR -- First Parallel Resonance (FPRs)

Definitions and Measurement Conditions

The **First Parallel Resonance**, **FPR**, is defined as the lowest frequency at which a suckout or notch appears in |S21|.


It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

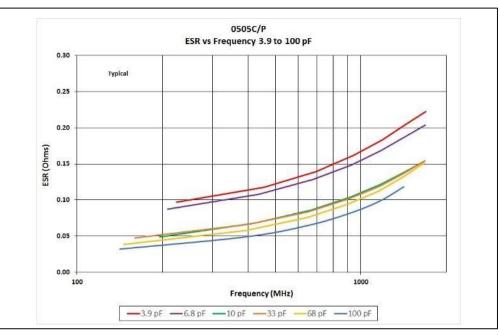
FSR -- First Series Resonance (FSRs)

† Definitions and Measurement Conditions

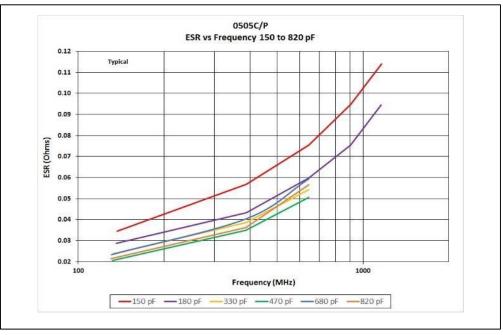
The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] =0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR is dependent internal capacitor on structure: substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) =25; gap in microstrip trace (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.



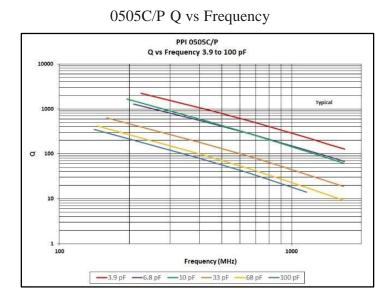
sales@passiveplus.com PPI0505CPData051622RevA


0505C/P (0.055" x 0.055")

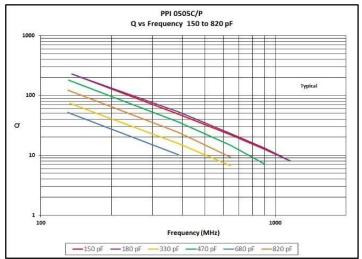
≠ ESR vs. Frequency

0505C/P ESR vs Frequency

0505C ESR vs Frequency

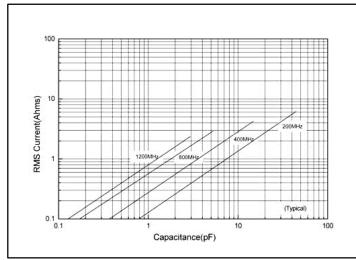

sales@passiveplus.com

PPI0505CPData051622RevA



0505C/P (0.055" x 0.055")

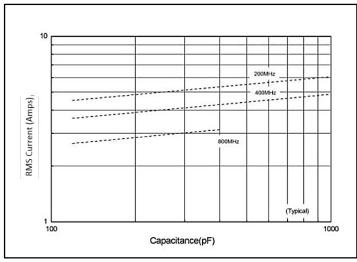
‡ Q vs. Frequency



0505C Q vs Frequency

÷ Current Rating vs. Capacitance

0505C/P Current Rating vs Capacitance



The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2} \pi d^2 C V_{rated}$$

The current depends on power dissipation limited: $I = \sqrt{\frac{I \text{ dissipation}}{ESR}}$

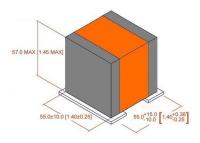
0505C Current Rating vs Capacitance

Note: If the thermal resistance of mounting surface is 40° C/W. then a power dissipation of 1.5 W will result in the current limited we can calculate the current limited:

$$I = \sqrt{\frac{P_{dissipation}}{ESR}}$$

sales@passiveplus.com

PPI0505CPData051622RevA


www.passiveplus.com

0505C/P (0.055" x 0.055")

Capacitor Application Program

Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Modelithics Vendor Program

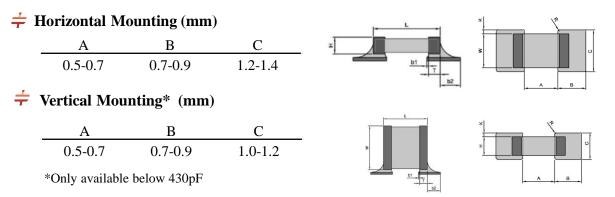
PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (http://passiveplus.com/addldocs_resources.php).

www.passiveplus.com

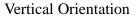
+1 (631) 425-0938

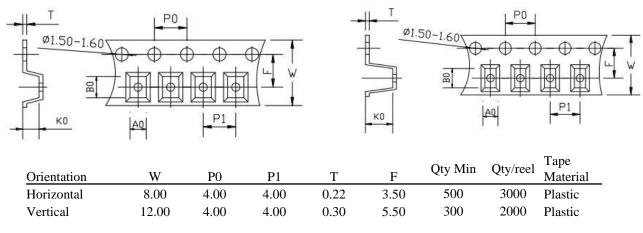
0505C/P (0.055" x 0.055"


Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

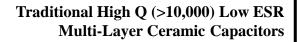
1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.


2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device


into exclusive pads by using soldering resist.

Tape & Reel Specifications (mm)

Horizontal Orientation


$A_0 B_0 K_0$

• Determined by component size. Typical clearance between the cavity and the component is: .05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.

• The component cannot rotate more than 20° within the determined cavity.

sales@passiveplus.com PPI0505CPData051622RevA

0505C/P (0.055" x 0.055")

† Engineering Design Kits

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

Kits are offered in Magnetic or Non-Magnetic Terminations. Kits are 100% RoHS compliant.

Kit N	umber	Value	Values		
 MAGNETIC	NON-MAGNETIC	Range	v alues		
 DKD0505C01	DKD0505C05	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF	-	
 DKD0505P01	DKD0505P05	0.1 - 2.0рг	0.1, 0.2, 0.3, 0.4, 0.5, 0.0, 0.7, 0.6, 0.7, 1.0, 1.2, 1.5, 1.6, 1.6, 2.0pr	RoHS	
 DKD0505C02	DKD0505C06	1 10mE	10 1 2 1 5 1 8 20 22 24 27 20 22 20 47 56 68 82 10mE		
 DKD0505P02	DKD0505P06	1 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF	RoHS	
DKD0505C03	DKD0505C07	10 100mE	10 12 15 18 20 22 24 27 20 22 20 47 56 68 82 100mE		
 DKD0505P03	DKD0505P07	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	RoHS	
 DKD0505C04	DKD0505C08	100 - 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 100)0pF 🚮	

sales@passiveplus.com PPI0505CPData051622RevA

+1 (631) 425-0938

11111C/P (0.110" x 0.110")

Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance •
- Ultra Stable Performance •
- Capacitance Range: • 0.1pF to 10000pF
- Working Voltage: 500V
- Extended Voltage: 1500V •

Part Numbering

Froduct Applications

Typical Functional Applications

- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

and Delay Lines

Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits

Marking shown for illustration purposes only. Actual marking may differ.

С J 1111 100 W 501 X TV C=NP0 Capacitor Add TV for Rated Case Size Laser P=P90 Code Vertical Voltage (.110" x .110") Marking 100=10x10⁰=10pF See Table Orientation 1R0=1.0pF Capacitance Termination Tolerance Туре See Table See Table

Capacitance Tolerance Codes

Code	Α	В	С	D	F	G	J	K
Tol.	$\pm 0.05 pF$	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Voltage Codes	Voltage	Code
	50V	500
	100V	101
	200V	201
	300V	301
	500V	501
	600V	601
	1000V	102
	1500V	152

sales@passiveplus.com

PPI1111CPDATA070122RevA

+1 (631) 425-0938

www.passiveplus.com

11111C/P (0.110" x 0.110")

1111C/P Capacitance Values

- NP0=C; P90=P
- Maximum Capacitance: 1111P=1000pF; 1111C=10000pF
- * Available in NP0 only.

Special capacitances, tolerances and WVDC are available. Please contact PPI.

Marking shown for illustration purposes only. Actual marking may differ.

Cap.	Сар		Rated \	WVDC	Cap.	Сар		Rated	WVDC	Cap.	Сар		Rated	WVDC	Cap.	Сар		Rated \	<u>WVDC</u>	
pF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.	
0.1	OR1			400014	3.3	3R3				36	360				390	391	F,G,			
0.2	OR2	A,B	500V	1000V 500V or 1500V	3.6	3R6				39	390				430	431	J,K	200V	600V	
0.3	OR3	,-			3.9	3R9				43	430				470	471	,			
0.4	0R4				4.3	4R3				47	470				510	511				
0.5	OR5				4.7	4R7			40001	51	510			400014	560	561				
0.6	OR6				5.1	5R1	A,B	500V	1000V or	56	560	F,G, 500	500V	1000V or	620	621				
0.7	0R7				5.6	5R6	C,D	5001	1500V	62	620	J,K	5001	1500V	680	681	F,G,	100V	200V	
0.8	OR8				6.2	6R2			68	680				750	751	J,K	1001	2001		
0.9	OR9				6.8	6R8				75	750				820	821				
1.0	1R0				7.5	7R5				82	820				910	911				
1.1	1R1				8.2	8R2				91	910				1000	102				
1.2	1R2				9.1	9R1				100	101				1100	112*				
1.3	1R3			1000V	10	100				110	111				1200	122*	F,G,	200V	N/A	
1.4	1R4	А,В,			11	110				120	121	5.6			1500	152*	J,K	2001	,	
1.5	1R5	д, в, С, D	500V	or	12	120				130	131			300V 1000V	1800	182*	F,G,			
1.6	1R6			1500V	13	130				150	151	F,G, J,K	300V		2000	202*				
1.7	1R7				15	150				160	161				2200	222*				
1.8	1R8				16	160	F,G,		1000V	180	181				2700	272*				
1.9	1R9				18	180	г, G, J,K	500V	or	200	201				3000	302*	J,K	100V	N/A	
2.0	2R0				20	200			1500V	220	221				3300	332*				
2.1	2R1				22	220				240	241				4700	472*				
2.2	2R2				24	240				270	271	F,G,	200V	600V	5100	512*				
2.4	2R4				27	270				300	301	J,K	2007	0001	5600	562*	F,G,	50V	N/A	
2.7	2R7					30	300				330	331				10000	103*	J,K		
3.0	3R0				33	330				360	361									

*Available in NP0 only

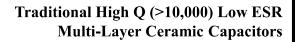
sales@passiveplus.com

PPI1111CPDATA070122RevA

Tern	nination	s Types and Code	es			Magn	etic 7	Terminations	
				,	Terminat Code	ion		Terminat	ion
	WC	, T			W	RoHS	So	100% S Ider over Nick	
		τ. τ.	u u		L		So	90% Sn10 Tin/Lea Ider over Nick	d
-	Terminat		on:	MS	ROHS		100% Sil	ver	
Code	es: W, L,	P Codes: N	AS, MIN		🔗 I	Non-Mag	gneti	c Terminatio	ns 🔗
					Р	RoHS	Sol	100%Si Ider over Copj	
					MN	ROHS		100% Sil	ver
Caj	pacitor D	Dimensions Unit: in	nch (millimeter)						
				etic Termina	ations				
			pacitor Dime					Lead Dimensi	
Code	Term.	Length	Width	Thickness	Overla	p Len	gth	Width	Thickness
		Lc	Wc	Tc	В	L	Ĺ	WL	TL
W/L	Chip	0.110 + 0.020 to -0.010 (2.79 +0.51 to -0.25)	$\begin{array}{c} 0.110 \pm 0.010 \\ (2.79 \pm 0.25) \end{array}$	0.10 (2.54 max)	0.024 (0.60ma:	x) -		-	-
MS	Microstrip	$\begin{array}{c} 0.135 \pm 0.015 \\ (3.43 \pm 0.38) \end{array}$	$\begin{array}{c} 0.110 \pm 0.010 \\ (2.79 \pm 0.25) \end{array}$	0.10 (2.54 max)	-	0.2 (6.35)		$\begin{array}{c} 0.093 \pm \! 0.005 \\ (2.36 \pm 0.13) \end{array}$	
			🗭 Non-Mag	gnetic Term	inations	\bigotimes			
Code	Term.	Length	Width	Thickness	Overla	p Len	gth	Width	Thickness
		Lc	Wc	Тс	В	L	Ĺ	WL	TL
Р	Chip	0.110 + 0.020 to -0.010 (2.79 +0.51 to -0.25)	$\begin{array}{c} 0.110 \pm 0.010 \\ (2.79 \pm 0.25) \end{array}$	0.10 (2.54 max)	0.024 (0.60ma	x)		-	-
MN	Microstrip Non-	$0.135 \pm 0.015 \\ (3.43 \pm 0.38)$	0.110 ± 0.010 (2.79 ±0.25)	0.10 (2.54 max)	-	0.2		$\begin{array}{c} 0.093 \pm 0.005 \\ (2.36 \pm 0.13) \end{array}$	0.004 ± 0.00 (0.10 ± 0.13)

1111C/P (0.110" x 0.110")

Electrical Specifications


Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	 0.1pF to 470pF: 10° Megaohms min. @ +25°C rated WVDC 10⁵ Megaohms min. @ +125°C rated WVDC 510pF to 1000pF: 10⁵ Megaohms min. @ +25°C rated WVDC 10⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 1250="" vdc<br="" voltage="" ≤="">120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C 0±30ppm/°C; >125°C to 200°C 0±60ppm/°C P: +90±20ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

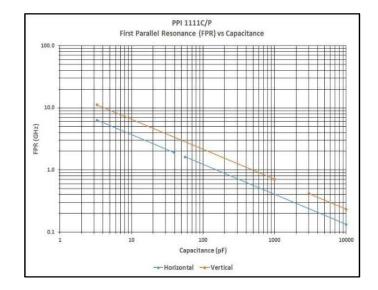
÷ Environmental Specifications

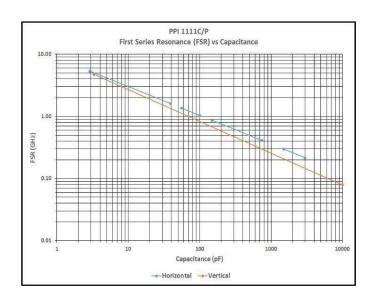
	Specification	Test Parameters
Thermal Shock	DWV: The initial Value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial Value IR: The initial value. Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	 MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 10lbs typical, 5lbs. Minimum. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

茾 FPR -- First Parallel Resonance (FPRs)

Definitions and Measurement Conditions


The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in [S21].


It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

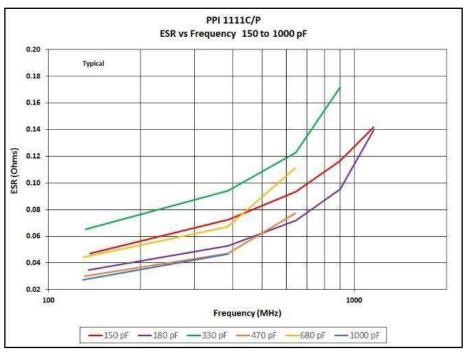
FSR --- First Series Resonance (FSRs)

Definitions and Measurement Conditions

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR dependent on internal capacitor is substrate thickness and dielectric structure: constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges.

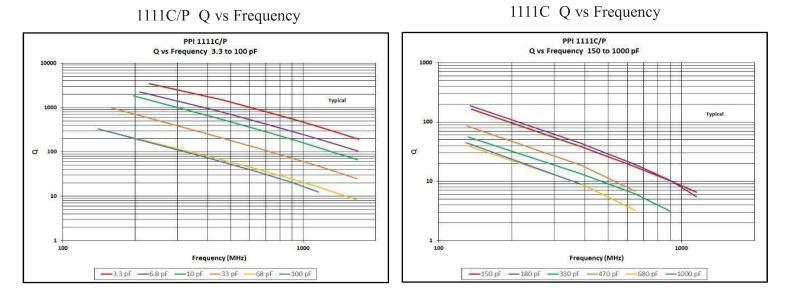
All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.


1111C/P (0.110" x 0.110")

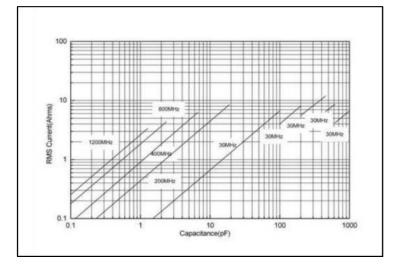
🗧 ESR vs. Frequency

1111C/P ESR vs Frequency

1111C ESR vs Frequency



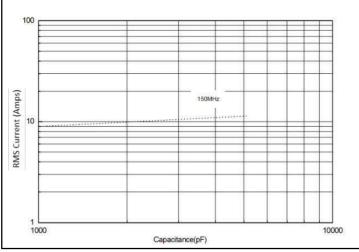
www.passiveplus.com


1111C/P (0.110" x 0.110")

茾 Q vs. Capacitance

+ Current Rating vs. Capacitance

1111C/P Current Rating vs Capacitance

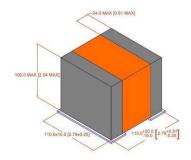


The current depends on voltage limited: $I = \frac{\sqrt{2}}{2} I_{pook} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2} \pi F C V_{rated}$ $I = \sqrt{\frac{P_{abssipation}}{ESR}}$

+1 (631) 425-0938

The current depends on power dissipation limited:

1111C Current Rating vs Capacitance


Note: If the thermal resistance of mounting surface is 20°C/W. then a power dissipation of 3 W will result in the current limited we can calculate the current limited: $I = \sqrt{\frac{P_{supports}}{ESR}}$

븆 Capacitor Application Program

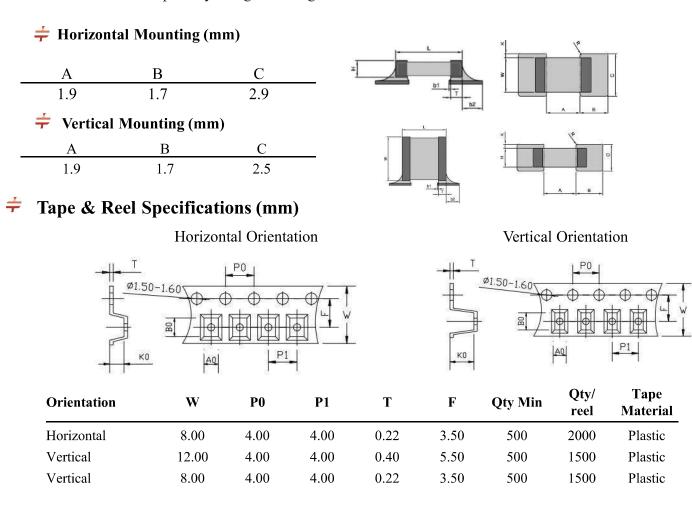
Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Modelithics Vendor Program

PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (<u>http://passiveplus.com/addldocs_resources.php</u>).

#Modelithics®



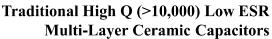
Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

$A_0 B_0 K_0$


- Determined by component size. Typical clearance between the cavity and the component is: .05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.
- The component cannot rotate more than 20° within the determined cavity.

Dimensions: mm

www.passiveplus.com

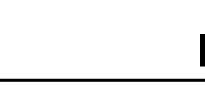
+1 (631) 425-0938

Engineering Design Kits

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

Kits are offered in Magnetic or Non-Magnetic Terminations. Kits are 100% RoHS com liant.

Value	Values
IAGNETIC Range	values
D1111C05 1.0 10m	F 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF
D1111P05	F 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9 , 4.7 , 5.6 , 6.8 , 8.2 , $10pF$
01111C06 10 100m	E 10 12 15 18 20 22 24 27 20 22 20 47 56 68 82 100mE
D1111P06	F 10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF
D1111C07 100 1000-	b 100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820,
D1111P07	1000pF Roms
01111C08 1000 10000	1000 , 1100, 1200, 1500, 1800, 2000, 2200, 2700, 3000, 3300, 3900, 4700,
D1111P08	5100, 5600, 10000pF
	IAGNETIC Range 01111C05 1.0 - 10pl 01111P05 10 - 100pl 01111C06 10 - 100pl 01111C07 100 - 1000pl 01111C08 1000 - 1000pl



sales@passiveplus.com

PPI1111CPDATA070122RevA

2225C/P (0.220" x 0.250")

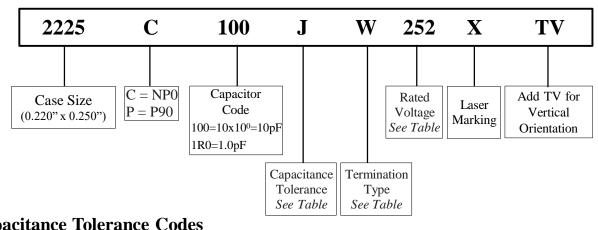
F Product Features

- High Q •
- High RF Current/Voltage
- Ultra Stable Performance •
- Capacitance Range: 0.5pF to 2700pF
- Working Voltage: 2500V
- Extended Voltage: 3600V

\neq Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- D.C. Blocking Impedance Matching


Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Antenna Tuning Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

茾 Part Numbering

† Capacitance Tolerance Codes

Code	Α	В	С	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

† Voltage Codes

Voltage	Code
500V	501
1000V	102
1500V	152
2000V	202
2500V	252
3000V	302
3600V	362

+1 (631) 425-0938

2225C/P (0.220" x 0.250")

† 2225C/P Capacitance Values

• NP0=C; P90=P

Special capacitances, tolerances and WVDC are available. Please contact PPI.

Cap.	Сар	T -1	Rated	WVDC	Cap.	Сар	T -1	Rated WVD	Cap.	Сар	T - 1	Rated	WVDC	Cap.	Сар	T - 1	Rated	WVDC
рF	Code	Tol.	Std.	Ext.	pF	Code	Tol.	Std. Ext.	pF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.
0.5	OR5				4.3	4R3			43	430				430	431	F,G,	15001/	2000V
0.6	OR6				4.7	4R7			47	470				470	471	J,K	13000	2000 V
0.7	OR7				5.1	5R1			51	510				510	511			
0.8	OR8				5.6	5R6			56	560				560	561			
0.9	OR9				6.2	6R2	B,C, D	2500V 3600	V 62	620	F,G,	25001/	3600V	620	621			
1.0	1R0				6.8	6R8			68	680	J,K	23000	30000	680	681			
1.1	1R1				7.5	7R5			75	750				750	751	F,G,	10001/	1500V
1.2	1R2				8.2	8R2			82	820				820	821	J,K	10000	13000
1.3	1R3				9.1	9R1			91	910				910	911			
1.4	1R4				10	100			100	101				1000	102			
1.5	1R5				11	110			110	111				1100	112			
1.6	1R6	B,C,	25001/	3600V	12	120			120	121				1200	122			
1.7	1R7	D	23000	30007	13	130			130	131				1500	152			
1.8	1R8				15	150			150	151				1800	182	F,G,	500V	N/A
1.9	1R9				16	160			160	161	F,G,	25001/	3000V	2200	222	J,K	5000	
2.0	2R0				18	180	5.0		180	181	J,K	25001	30007	2700	272			
2.1	2R1				20	200	F,G, J,K	2500V 3600	V 200	201								
2.2	2R2				22	220	-,		220	221								
2.4	2R4				24	240			240	241								
2.7	2R7				27	270			270	271								
3.0	3R0				30	300			300	301								
3.3	3R3				33	330			330	331	F,G,	15001/	2000V					
3.6	3R6				36	360			360	361	J,K	10000	20000					
3.9	3R9				39	390			390	391								

2225C/P (0.220" x 0.250")

+ Termination Types and Codes Chip Termination: Microstrip Termination: Codes: W, L, P Codes: MS, MN Axial Ribbon Termination: Radial Wire Termination: Code: AR, AN Codes: RW, RN Radial Ribbon Termination: Code: RR, FN Axial Wire Termination: Codes: AW, BN Termination Magnetic Termination **Non-Magnetic** \bigotimes \bigcirc Termination Code **Termination** Code 100% Sn 100%Sn RoHS Р W Solder over Copper Plating Solder over Nickel Plating 90% Sn10%Pb Tin/Lead MN L Solder over Nickel Plating AN MS RoHS FN Silver-Plated Copper AR ROHS RN Silver-Plated Copper RoHS RR BN

Note: "Non-Magnetic" means no magnetic materials.

www.passiveplus.com

RW

AW ROHS

+1 (631) 425-0938

2225C/P (0.220" x 0.250")

For Termination Types For Termination Types images, see previous page

Unit: inch (millimeter)

			Magnetic	Termina	tions					
		Cap	acitor Dim		Le	ad Dimensio	ons			
		Length	Width	Thicknes	s Overlap	Length	Width	Thickness		
Code	Term.	Lc	Wc	Tc	В	$\mathbf{L}\mathbf{L}$	WL	TL		
W/L	Chip	0.225 -0.010+0.25 (5.72 -0.25+ 0.64)	$\begin{array}{c} 0.250 \pm \\ 0.015 \\ (6.35 \pm 0.38) \end{array}$	0.165 (4.19) max	0.020~0.047 (0.50~1.20) max					
MS	Microstrip					0.500	0.240 ± 0.005	0.008 ± 0.001		
AR	Axial Ribbon					(12.70) min		(0.2 ±0.025)		
RR	Radial Ribbon	$\begin{array}{c} 0.245 \pm 0.025 \\ (6.22 \pm 0.64) \end{array}$	$\begin{array}{c} 0.250 \pm 0.015 \\ (6.35 \pm 0.38) \end{array}$	0.150 (3.81) max		0.354 (9.00) min	$\begin{array}{c} 0.118 \pm 0.005 \\ (3.0 \pm 0.13) \end{array}$	$\begin{array}{c} 0.012 \pm 0.001 \\ (0.3 \pm 0.025) \end{array}$		
RW	Radio Wire					0.709 (18.00) min	_)31 ±0.004		
AW	Axial Wire					0.906 (23.00) min	(0.80	±0.10)		
		(📎 N	Non-Magne	tic Term	inations 🧭	9				
		Сар	acitor Dim	ensions		Lead Dimensions				
		Length	Width	Thicknes	s Overlap	Length	Width	Thickness		
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL		
Р	Chip	0.225 -0.010+0.25 (5.72 -0.25+ 0.64)	$\begin{array}{c} 0.250 \pm \\ 0.015 \\ (6.35 \pm 0.38) \end{array}$	0.165 (4.19) max	0.020~0.047 (0.50~1.20) max					
MN	Microstrip					0.500	0.240 ± 0.005	0.008 ± 0.001		
AN	Axial Ribbon			0.150		(12.70) min	(6.1 ± 0.13)	(0.2 ±0.025)		
FN	Radial Ribbon	$\begin{array}{c} 0.245 \pm 0.025 \\ (6.22 \pm 0.64) \end{array}$	$\begin{array}{c} 0.250 \pm 0.015 \\ (6.35 \pm 0.38) \end{array}$	0.150 (3.81) max		0.354 (9.00) min	0.118 ±0.005 (3.0 ±0.13)	$\begin{array}{c} 0.012 \pm 0.001 \\ (0.3 \pm 0.025) \end{array}$		
RN	Radial Wire					0.709 (18.00) min	-	031 ±0.004		
BN	Axial Wire					0.906 (23.00) min	(0.80	±0.10)		

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

2225C/P (0.220" x 0.250")

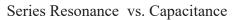
÷ Electrical Specifications

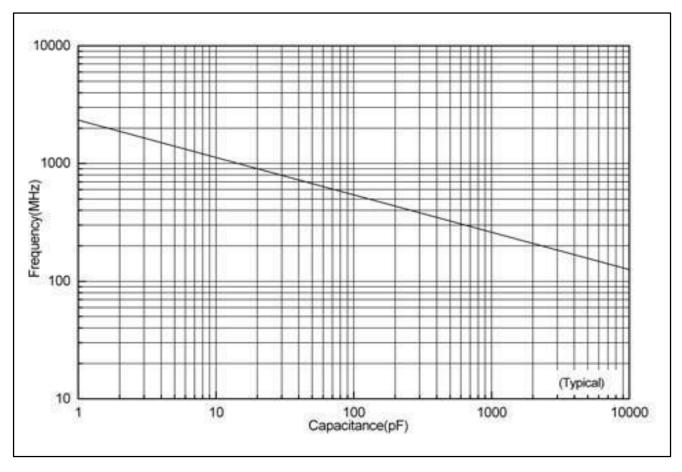
Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds, Rated Voltage \leq 500VDC 150% of Voltage for 5 seconds, 500VDC <rated <math="" voltage="">\leq 1250 VDC 120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C 0±30ppm/°C; >125°C to 200°C 0±60ppm/°C P: -55°C to 200°C +90±20ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

† Environmental Specifications

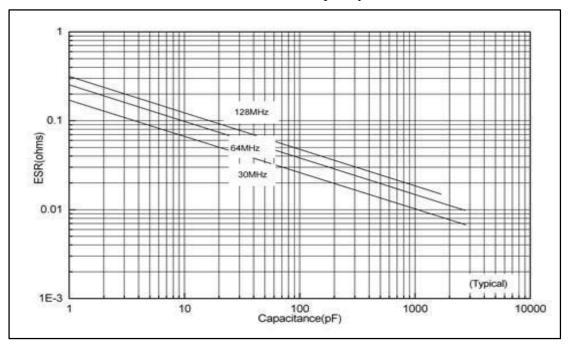
	Specification	Test Parameters			
Thermal Shock Moisture	DWV: The initial Value IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 0.5% or 0.5pF,	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.			
Resistance	whichever is greater.	MIL-STD-202, Method 106			
Humidity (Steady State)	DWV: The initial Value IR: The initial value. Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.			
Life	 IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater. 	MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage \leq 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage \leq 1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC			
Terminal Strength	Force: 20lbs typical, 10lbs. Minimum. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.			



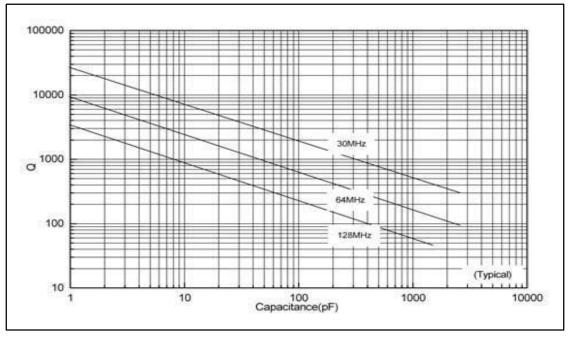

+1 (631) 425-0938

2225C/P (0.220" x 0.250")

≠ Series Resonance vs. Capacitance



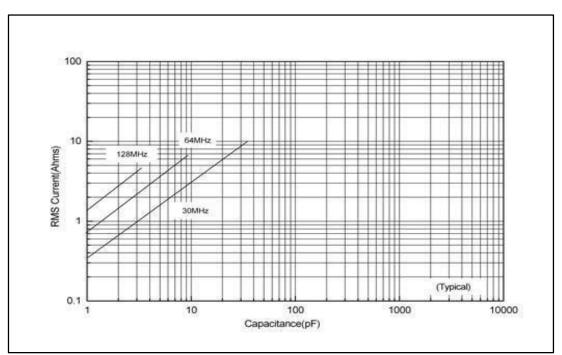
2225C/P(0.220" x 0.250")


≑ ESR vs. Frequency

2225C/P ESR vs Frequency

茾 Q vs. Capacitance

Q vs Capacitance



+1 (631) 425-0938

2225C/P (0.220" x 0.250")

Current Rating vs. Capacitance

2225C/P Current Rating vs Capacitance

The current depends on voltage limited:

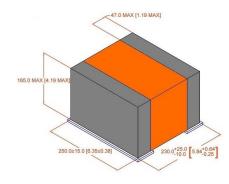
$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2} \pi F C V_{rated}$$

The current depends on power dissipation limited:

$$I = \sqrt{\frac{P_{dissipation}}{ESR}}$$

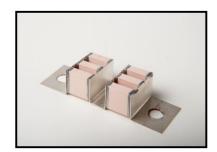
Note: If the thermal resistance of mounting surface is 15° C/W, then a power dissipation of 4W will result in the current limited.

We can calculate the current limited.



2225C/P (0.220" x 0.250")

Capacitor Application Program

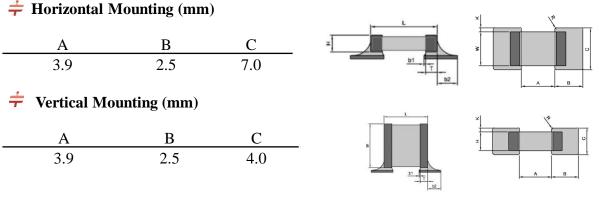

Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

÷ Custom Assemblies

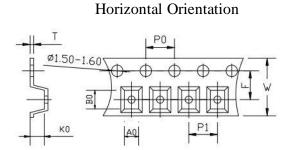
Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

sales@passiveplus.com


2225C/P (0.220" x 0.250")

Field Freedom Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Tape & Reel Specifications (mm)

Orientation	W	P0	P1	Т	F	Qty Min	Qty/reel	Tape Material
Horizontal	16.00	4.00	12.00	0.30	7.50	500	500	Plastic

$A_0 B_0 K_0$

Determined by component size. Typical clearance between the cavity and the component is:

.05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.

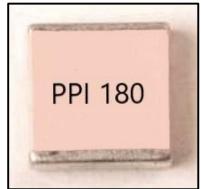
- The component cannot rotate more than 20° within the determined cavity.

3838C/P (0.380" x 0.380")

Product Features

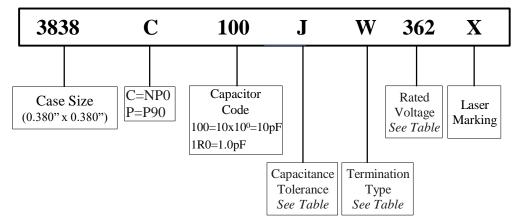
- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 0.5pF to 5100pF
- Working Voltage: 3600V
- Extended Voltage: 7200V

F Product Applications


Typical Functional Applications:

- Tuning Bypass Coupling
- D.C. Blocking Impedance Matching

Typical Circuit Applications


- HF/ RF Power Amplifiers Antenna
- Tuning Plasma Chambers Medical

Equipment • Transmitters

Marking shown for illustration purposes only. Actual marking may differ.

茾 Part Numbering

Capacitance Tolerance Codes

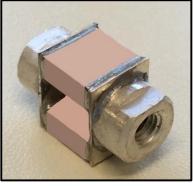
Со	de	Α	В	С	D	F	G	J	K
Тс	ol. :	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Foltage Codes

Voltage	Code
500V	501
1000V	102
2500V	252
3600V	362
7200V	722

www.passiveplus.com

+1 (631) 425-0938


sales@passiveplus.com

3838C/P(0.380" x 0.380")

† 3838C/P Capacitance Values

Special capacitances, tolerances and WVDC are available. Please contact PPI.

0.5 0.7 4.7 4.7 4.7 4.7 51 510 560 620 680 620 68	561 631 E.G	WVDC 2500V
0.6 0R6 0R7 5.1 5R1 5R1 5R6 560 560 620 680 680 680 680 680 680 680 750 750 750 750 750 750 820 820 820 910 910 910 910 910 910 910 1000 <th>621 F,G, 21 681 J,K 751 2 821 911 .</th> <th>2500V</th>	621 F,G, 21 681 J,K 751 2 821 911 .	2500V
0.7 0R7	681 J,K 2 751 2 821 911 4	2500V
0.8 0R8 6.2 6R2 B,C, 3600V 7200V 68 680 F 750 750 750 750 750 750 750 820 820 820 820 820 910 <td< th=""><th>681 J,K 751 821 911 911</th><th></th></td<>	681 J,K 751 821 911 911	
0.9 0R9 6.8 6R8 D 3600V 7200V 75 750 820 820 820 820 820 820 820 910	821 911	
0.9 0R9 6.8 6R8 D 75 750 820 820 820 820 820 820 820 820 820 820 910<	911	
1.1 1R1 8.2 8R2 91 910 F,G, 3600V 7200V 1000 1		
	102	
	112	
1.3 1R3 10 100 110 111 1200 1	122 F,G, 1	1000V
1.4 1R4 11 110 120 121 1500 1	152	
1.5 1R5 12 120 130 131 1800 1	182	
1.6 1R6 13 130 150 151 2200 2	222	
1.7 1R7 D 3600V 7200V 15 150 160 161 2400 2	242	
	272	
	302	
	332	
F,G, 3500V 7200V 240 244	362 E.G	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	392 J,K	500V
3000V N/A	432	
	472	
	512	
3.3 3R3 36 360 390 391		
3.6 3R6 39 390 430 431		
F,G, 2500V N/A		
3.9 3R9 43 430 470 471 J,K 2500V N/A 4.3 4R3 47 470 510 511 1		

+1 (631) 425-0938

3838C/P (0.380" x 0.380")

\neq Termination Types and Codes

Le Vie	Chip Termination: Codes: W, L, P		Microstrip Termination: Codes: MS, MN
	Axial Ribbon Termination: Code: AR, AN	We transformed to the second s	Radial Wire Termination: Codes: RW, RN
	Radial Ribbon Termination:		Axial Wire Termination: Codes: AW, BN
	Code: RR, FN		
Termination Code	Code: RR , FN Magnetic Termination	Termination Code	Non-Magnetic Terminations
		Code P Koms	
Code	Magnetic Termination 100% Sn	Code P Koms MN Koms	Terminations 100%Sn
Code W Koms	Magnetic Termination 100% Sn Solder over Nickel Plating 90% Sn10% Pb Tin/Lead	Code P Koms MN Koms AN Koms	Terminations 100% Sn Solder over Copper Plating
Code W Kohs L	Magnetic Termination 100% Sn Solder over Nickel Plating 90% Sn10% Pb Tin/Lead	Code P Koms MN Koms AN Koms FN Koms	Terminations 100%Sn
Code W Korrs L MS Korrs	Magnetic Termination 100% Sn Solder over Nickel Plating 90% Sn10% Pb Tin/Lead	Code P Koms MN Koms AN Koms	Terminations 100% Sn Solder over Copper Plating
Code W Korrs L MS Korrs AR Korrs	Magnetic Termination 100% Sn Solder over Nickel Plating 90% Sn10% Pb Tin/Lead Solder over Nickel Plating	Code P Koms MN Koms AN Koms FN Koms	Terminations 100% Sn Solder over Copper Plating

sales@passiveplus.com PPI3838CPDATA042022RevA

3838C/P(0.380" x 0.380")

† Termination Types For Termination Types images, see previous page

Unit: inch (millimeter)

			Μ	agnetic Te	rminations			
			Capacitor Di	mensions			Lead Dimensio	ns
		Length	Width	Thickness	Overlap	Length	Width	Thickness
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL
W	Chip	0.380 -0.010+0.015 (9.65 - 0.25+0.38)	0.380 ±0.010 (9.65±0.25)	0.170 (4.32) max	0.024~0.059			
MS	Microstrip					0.728	0.350 ± 0.020 (8.89 ± 0.50)	0.008±0.001
AR	Axial Ribbon	0.380	0.380			(18.50) min	0.315±0.010 (8.00±0.25)	(0.20±0.025)
RR	Radial Ribbon	-0.010.+0.015 (9.65	± 0.010 (9.65	0.177 (4.50)		0.354 (9.00) min	0.118 ± 0.010 (3.0 ± 0.25)	$\begin{array}{c} 0.012 \pm 0.001 \\ (0.3 \pm 0.025) \end{array}$
RW	Radial Wire	-0.25+0.38)	(9.03 ±0.25)	max		0.709 (18.00) min	Dia.: 0.031±0	0.004
AW	Axial Wire					0.906 (23.00) min	(0.80±	0.10)
			🐼 Non	-Magnetic	Terminatio	on: 🐼		
-			Capa	citor Dimens	sions		Lead Dimensio	ns
		Length	Width	Thickness	Overlap	Length	Width	Thickness
Code	Term.	Lc	Wc	Тс	В	LL	WL	TL
P	Chip	0.380 -0.010+0.015 (9.65 - 0.25+0.38)	0.380 ±0.010 (9.65±0.25)	0.170 (4.32) max	0.024~0.059 (0.60~1.50)			
MN	Microstrip					0.728	$\begin{array}{c} 0.350 \pm 0.020 \\ (8.89 \pm 0.50) \end{array}$	0.008 ± 0.001
AN	Axial Ribbon	0.380 -0.010+0.015	0.380 ± 0.010	0.177		(18.50) min	0.315±0.010 (8.00±0.25)	(0.20 ± 0.025)
FN	Radial Ribbon	-0.010+0.015	±0.010 (9.65	(4.50) max		0.354 (9.00) min	$\begin{array}{c} 0.118 \pm 0.010 \\ (3.0 \pm 0.25) \end{array}$	$\begin{array}{c} 0.012 \pm 0.001 \\ (0.3 \pm 0.025) \end{array}$
RN	Radial Wire	-0.25+0.38)	±0.25)	mux		0.709 (18.00) min		
BN	Axial Wire					0.906 (23.00) min	(0.80 ± 0.00)	.10)

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com PPI3838CPDATA042022RevA

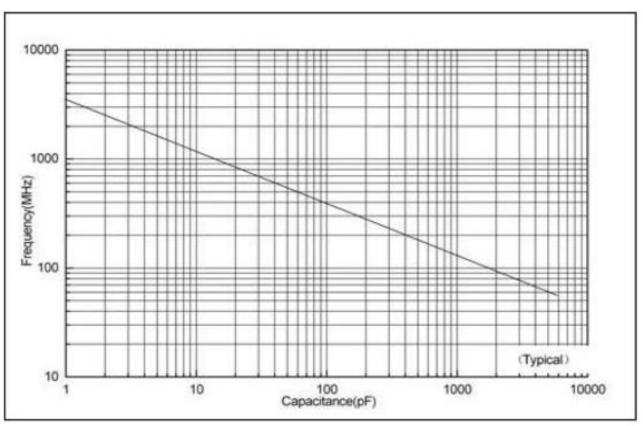
3838C/P (0.380" x 0.380")

Electrical Specifications

Quality Factor (Q)	Greater than 10,000 at 1 MHz			
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC			
Rated Voltage	See Rated Voltage Table			
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds, Rated Voltage \leq 500VDC 150% of Voltage for 5 seconds, 500VDC <rated <math="" voltage="">\leq 1250 VDC 120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>			
Operating Temperature Range	-55°C to 200°C			
Temperature Coefficient (TC)	C: -55°C to 125°C 0±30ppm/°C; >125°C to 200°C 0±60ppm/°C P: -55°C to 200°C +90±20ppm/°C			
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater			
Piezoelectric Effects	None			
Termination Type	See Termination Type Table			

Environmental Specifications

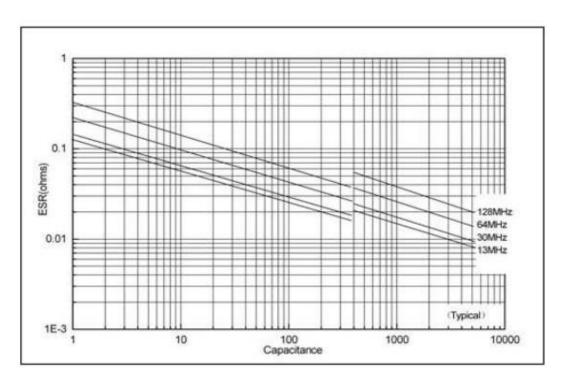
	Specification	Test Parameters
Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	 IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater. 	MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage \leq 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage \leq 1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 20lbs typical, 10lbs. min. Duration Time: 5 to 10 seconds	Applied a force and maintained for a period of 5 to 10 seconds


Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

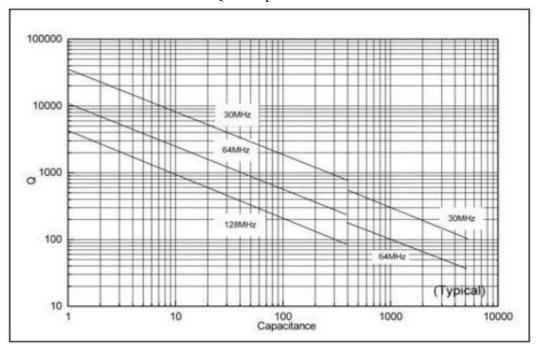
3838C/P(0.380" x 0.380")

≠ Series Resonance vs. Capacitance

Series Resonance vs. Capacitance

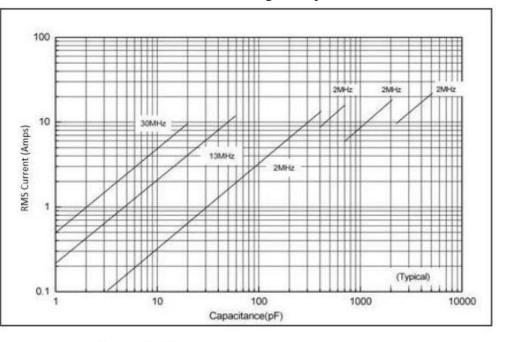

+1 (631) 425-0938

3838C/P (0.380" x 0.380")


ESR vs. Frequency

ESR vs Frequency

Q vs Capacitance


+1 (631) 425-0938

sales@passiveplus.com PPI3838CPDATA042022RevA

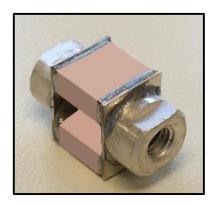
3838C/P (0.380" x 0.380")

茾 Current Rating vs. Capacitance

3838C/P Current Rating vs Capacitance

The current depends on voltage limited:

The current depends on power dissipation limited:


 $I = \sqrt{\frac{P_{abssipation}}{ESR}}$

Note: If the thermal resistance of mounting surface is 12°C/W, then a power dissipation of 5W will result in the current limited. We can calculate the current limited.

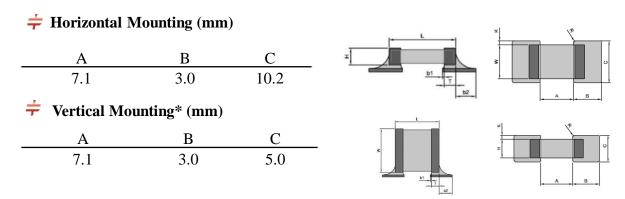
÷ Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

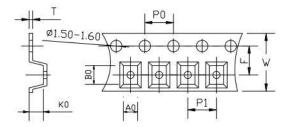
+1 (631) 425-0938

sales@passiveplus.com PPI3838CPDATA042022RevA


3838C/P (0.380" x 0.380")

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.


1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

÷ Tape & Reel Specifications (mm)

Horizontal Orientation

Orientation	W	PO	P1	Т	F	Qty Min	Qty/ reel	Tape Material
Horizontal	16.00	4.00	12.00	0.30	7.50	50	200	Plastic

$A_0 B_0 K_0$

Determined by component size. Typical clearance between the cavity and the component is:
 .05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.

• The component cannot rotate more than 20° within the determined cavity.

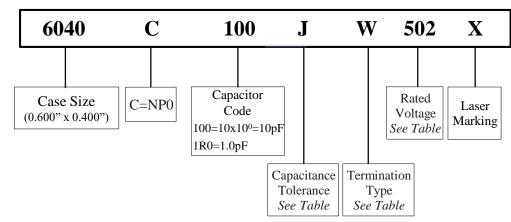
www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com

Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 1.0pF to 6800pF
- Working Voltage: 5000V
- Extended Voltage: 8000V


+ Typical Circuit Applications

- Semiconductor Manufacturing
- High Energy Power Transfers
- Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

茾 Part Numbering

Capacitance Tolerance Codes

Code	В	С	D	F	G	J	K
Tol.	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Voltage Codes

Voltage	Code
1000V	102
2000V	202
3000V	302
5000V	502
8000V	802
00001	002

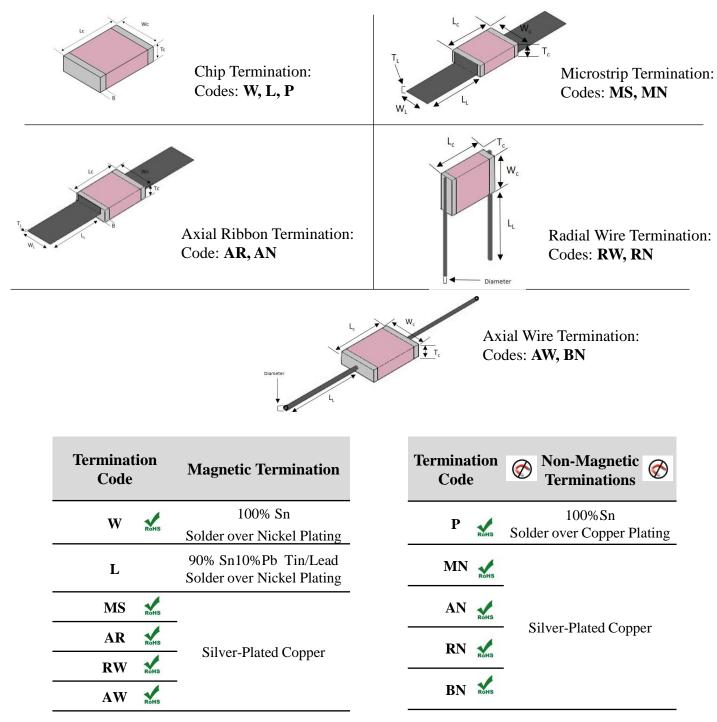
+1 (631) 425-0938

6040C (0.600" x 0.400")

6040C Capacitance Values

For special capacitances, tolerances and WVDC, please contact PPI.

Marking shown for illustration purposes only. Actual marking may differ.


Cap.	Сар	Tol.	Rated WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	<u>Rated</u>	WVDC
рF	Code	101.	Std. Ext.	рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.
1.0	1R0			39	390				1500	152	БС		
1.2	1R2			47	470				1800	182	F,G, J,K	2000V	3000V
1.5	1R5			56	560	F,G,	50001/	8000V	2200	222	- /		
1.8	1R8			68	680	J,K	50000	8000 V	2700	272			
2.2	2R2			82	820				3300	332			
2.7	2R7	B,C,	5000V 8000V	100	101				4700	472	F,G,	1000V	2000\/
3.3	3R3	D	50000 00000	120	121				5100	512	J,K	10000	2000 V
3.9	3R9			150	151				5600	562			
4.7	4R7			180	181				6800	682			
5.6	5R6			220	221								
6.8	6R8			270	271	F,G,	3000V	5000V					
8.2	8R2			330	331	J,K	30000	50000					
10	100			390	391								
12	120			470	471								
15	150	5.0		560	561								
18	180	F,G, J,K	5000V 8000V	680	681								
22	220	•,		820	821								
27	270			1000	102	F,G, J,K	2000V	3000V					
33	330			1200	122	•,							

6040C (0.600" x 0.400")

† Termination Types and Codes

Note: "Non-Magnetic" means no magnetic materials.

+1 (631) 425-0938

6040C (0.600" x 0.400")

† Terminations

For Termination Types images, see previous page

Unit: inch (millimeter)

			Μ	agnetic Termi	nations			
			Capacitor Di	mensions]	Lead Dimension	S
		Length	Width	Thickness	Overlap	Length	Width	Thickness
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL
W	Chip	0.614 -0.010+0.015 (15.6 -0.25+0.38)	0.433±0.010 (11.0±0.25)	0.154±0.008 (3.90±0.20) max	0.063 (1.60) max	-	-	-
MS	Microstrip					0.787	0.350 ± 0.010	0.008±0.001
AR	Axial Ribbon	0.614 -0.010+0.015	0.433±0.010	0.154 ± 0.008		(20.0) min	(8.89±0.25)	(0.20 ± 0.025)
RW	Radial Wire	(15.6 -0.25+0.38)	(11.0±0.25)	(3.90±0.20) max	-	0.787 (20.00) min	_ Dia.: 0.030±0	
AW	Axial Wire					0.984 (25.00) min	(0.80 ± 0.00)).10)
			🐼 Non	-Magnetic Ter	minations	\bigotimes		
			Capacitor Di	mensions]	Lead Dimension	s
		Length	Width	Thickness	Overlap	Length	Width	Thickness
Code	Term.	Lc	Wc	Tc	В	LL	WL	TL
Р	Chip	0.614 -0.010+0.015 (15.6 -0.25+0.38)	0.433±0.010 (11.0±0.25)	0.154±0.008 (3.90±0.20) max	0.063 (1.60) max	-	-	-
MN	Microstrip					0.787	0.350 ± 0.010	0.008 ± 0.001
AN	Axial Ribbon	0.614 -0.010+0.015	0.433±0.010	0.154±0.008		(20.0) min	(8.89±0.25)	(0.20 ± 0.025)
RN	Radial Wire		(11.0±0.25)	(3.90±0.20) max	-	0.787 (20.00) min	- Dia.: 0.031 ±0	.004
BN	Axial Wire					0.984 (25.00) min	(0.80 ± 0.1)	

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

+1 (631) 425-0938

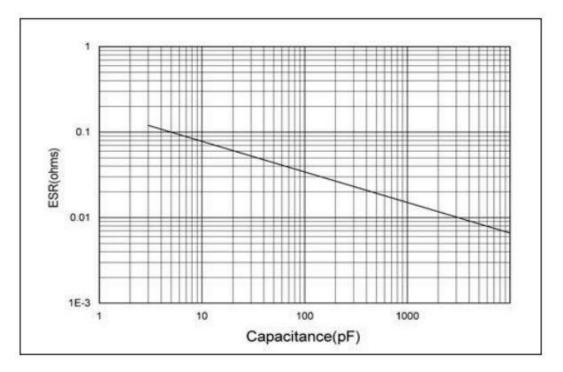
6040C (0.600" x 0.400")

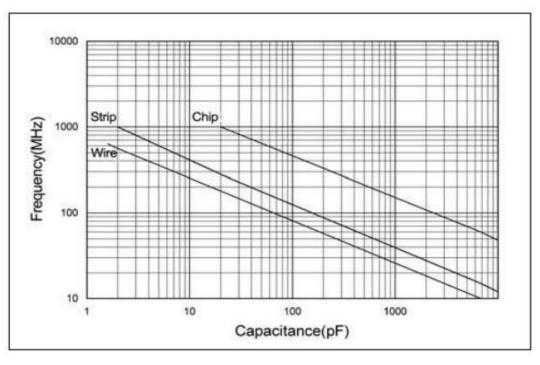
Electrical Specifications

Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test Frequency 1MHz; More than 1000pF, Q value more than 2000, Test Frequency 1MHz			
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC			
Rated Voltage	See Rated Voltage Table			
Dielectric Withstanding Voltage (WVDC)	250% of Voltage of 5 seconds, Rated Voltage \leq 500VDC 150% of Voltage for 5 seconds, 500VDC <rated <math="" voltage="">\leq 1250 VDC 120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>			
Operating Temperature Range	-55°C to 175°C			
Temperature Coefficient (TC)	-55°C to 125°C 0±30ppm/°C >125°C to 175°C 0±60ppm/°C			
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater			
Piezoelectric Effects	None			
Termination Type	See Termination Type Table			

Environmental Specifications

	Specification	Test Parameters
Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	 IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater. 	MIL-STD-202, Method 108. For 2000 hours, at 125°C. 200% of Voltage for Capacitors, Rated Voltage \leq 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage \leq 1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 25lbs typical, 20lbs. min. Duration Time: 5 to 10 seconds	

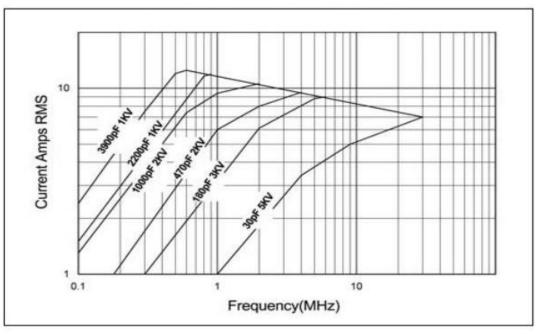

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

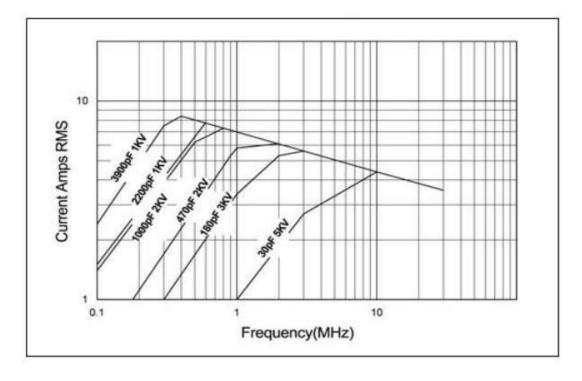


6040C (0.600" x 0.400")

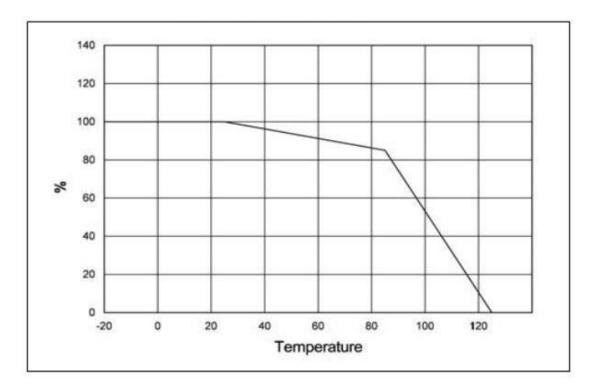
≠ ESR vs. Capacitance Measured @ 30MHz

Self Resonant Frequency vs. Capacitance




+1 (631) 425-0938

÷ Strip Terminals Rated Current vs. Frequency


i Wire Terminals Rated Current vs. Frequency

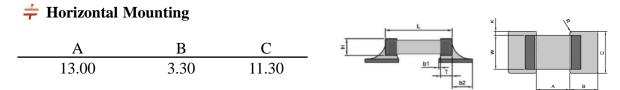
≠ % Maximum Current vs. Ambient Temperature

t Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

+1 (631) 425-0938



Free Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

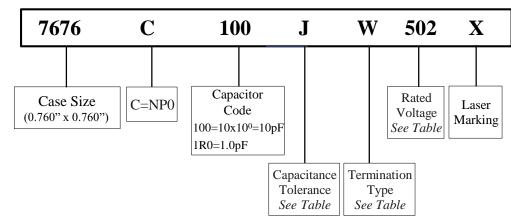
2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Dimensions: mm

7676C (0.760" x 0.760")

Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 1.0pF to 20000pF
- Working Voltage: 5000V
- Extended Voltage: 8000V


+ Typical Circuit Applications

- Semiconductor Manufacturing
- High Energy Power Transfers
- Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

† Capacitance Tolerance Codes

Code	В	С	D	F	G	J	K
Tol.	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Voltage Codes

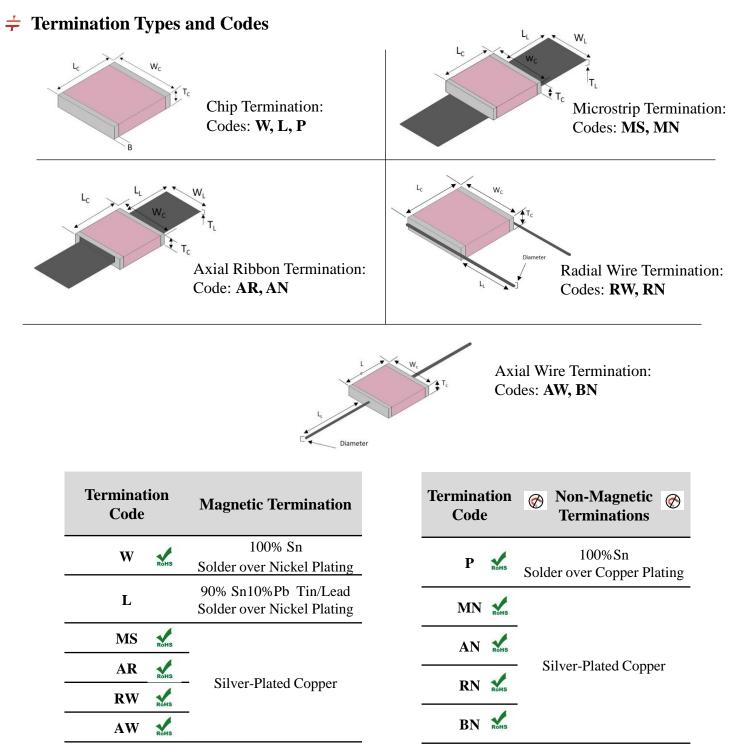
Voltage	Code
1000V	102
2000V	202
3000V	302
5000V	502
8000V	802

+1 (631) 425-0938

7676C (0.760" x 0.760")

÷ 7676C Capacitance Values

Special capacitances, tolerances and WVDC are available. Please contact PPI.


Marking shown for illustration purposes only. Actual marking may differ.

Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC													
рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.													
1.0	1R0				33	330				1000	102																
1.2	1R2			39	390				1200	122																	
1.5	1R5				47	470			:	1500	152																
1.8	1R8				56	560				1800	182																
2.2	2R2				68	680	ГС			2200	222	G,J, K	3000V	5000V													
2.7	2R7	B,C,	5000V	8000V	82	820	F,G, J,K	5000V	8000V	2700	272																
3.3	3R3	D	5000 0	00000	100	101	- /			3300	332																
3.9	3R9				120	121				4700	472																
4.7	4R7				150	151				5100	512																
5.6	5R6		180 181 220 221															180	181				5600	562			
6.8	6R8				6800	682																					
8.2	8R2				270	271				7500	752	G,J, K	1000V	3000V													
10	100				300	301				8200	822																
12	120				390	391	5.0			10000	103																
15	150	F,G,	5000V	8000V	470	471	F,G, J,K	3000V	5000V	12000	123																
18	180	J,K	30000	3000 V	560	561	•,			15000	153	G,J,	10001	2000V													
22	220						680	681				18000	183	К	10000	20000											
27	270				820	821				20000	203																

7676C (0.760" x 0.760")

Note: "Non-Magnetic" means no magnetic materials.

7676C (0.760" x 0.760")

† **Termination Types** For Termination Types images, see previous page

							Unit:	inch (millimeter)		
			Μ	agnetic Termi	nations					
	Capacitor Dimensions Lead Dimensions									
	Length Width Thickness Overlap						Width	Thickness		
Code	Term.	Le	Wc	Тс	В	LL	WL	TL		
W	Chip					-	-	-		
MS	Microstrip				0.063 (1.60) max	0.787	0.591 ± 0.010	0.008±0.001		
AR	Axial Ribbon	0.760 -0.010+0.015 (19.3 -0.25+0.38)	0.760±0.010 (19.3±0.25)	0.154±0.008 (3.90±0.20)		(20.0) min	(15.0±0.25)	(0.20± 0.025)		
RW	Radial Wire	`		max	0.787 (20.00) min Dia.: 0.030±0.004					
AW	Axial Wire					1.181 (0.80 ± 0.10) (30.00) min				
			🔗 Non	-Magnetic Ter	minations	\bigotimes				
			Capacitor Di	nensions			Lead Dimension	S		
		Length	Width	Thickness	Overlap	Length	Width	Thickness		
Code	Term.	Le	Wc	Тс	В	LL	WL	TL		
Р	Chip					-	-	-		
MN	Microstrip					0.787	0.591 ± 0.010	0.008 ±0.001		
AN	Axial Ribbon	0.760 -0.010+0.015 (19.3 -0.25+0.38)	0.760±0.010 (19.3±0.25)	0.154±0.008 (3.90±0.20) max	0.063 (1.60) max	(20.0) min	(15.0 ± 0.25)	(0.20 ± 0.025)		
RN	Radial Wire			шал	шал	0.787 (20.00) min	– Dia.: 0.031 ±0 .	004		
BN	Axial Wire						(0.80 ± 0.000)			

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

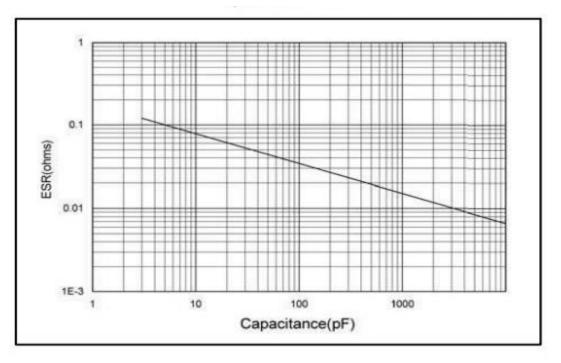
7676C (0.760" x 0.760")

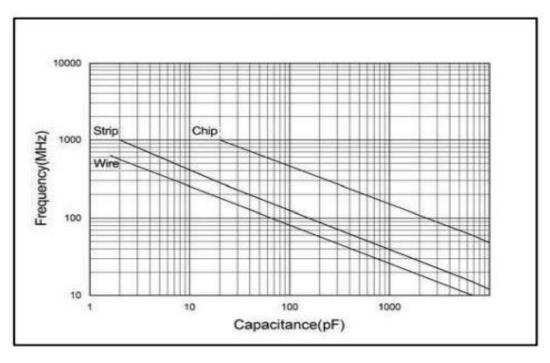
÷ Electrical Specifications

Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test Frequency 1MHz; More than 1000pF, Q value more than 2000, Test Frequency 1MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (WVDC)	250% of Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 1250="" vdc<br="" voltage="" ≤="">120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>
Operating Temperature Range	-55°C to 175°C
Temperature Coefficient (TC)	-55°C to 125°C 0±30ppm/°C >125°C to 175°C 0±60ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

Environmental Specifications

	Specification	Test Parameters
Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 125°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 3 0lbs. min. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.


Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

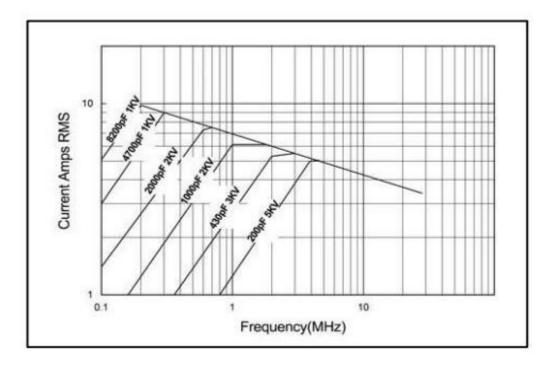


7676C (0.760" x 0.760")

÷ ESR vs. Capacitance Measured @ 30MHz

Self Resonant Frequency vs. Capacitance

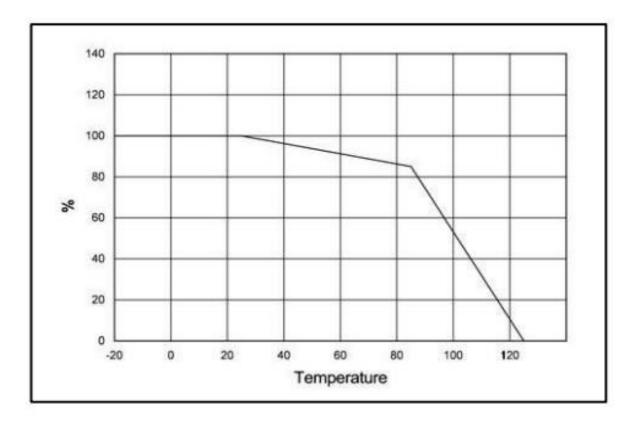
+1 (631) 425-0938



7676C (0.760" x 0.760")

÷ Strip Terminals Rated Current vs. Frequency

+ Wire Terminals Rated Current vs. Frequency



7676C (0.760" x 0.760")

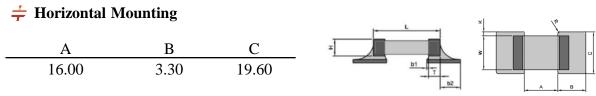
% Maximum Current vs. Ambient Temperature

t Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

+1 (631) 425-0938

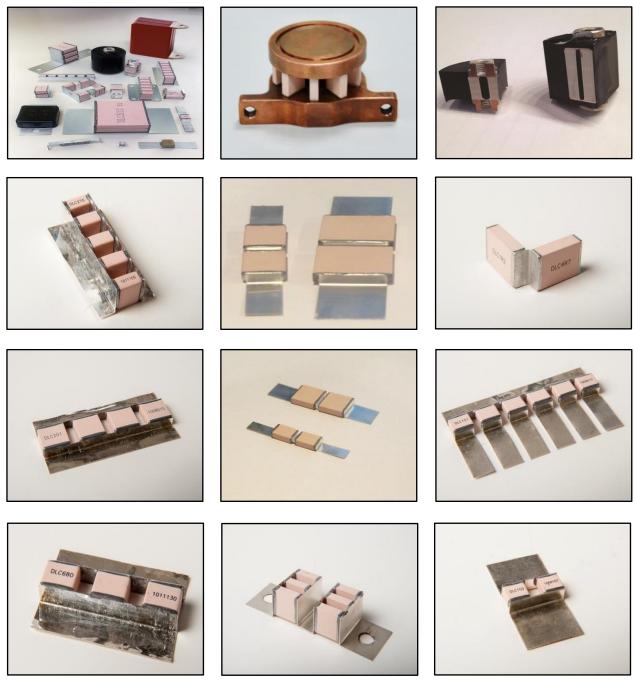

7676C (0.760" x 0.760")

Free Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.



Dimensions: mm

www.passiveplus.com

Marking shown for illustration purposes only. Actual marking may differ.

Please contact PPI (sales@passiveplus.com) to discuss custom assembly options.

+1 (631) 425-0938

www.passiveplus.com

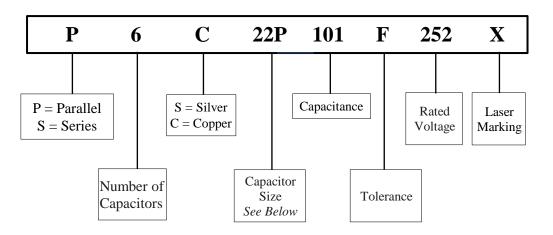
PPICUSTOMASSEMBLIES042122RevA

sales@passiveplus.com

UHF/RF High Q Power Transmitter Capacitors (NP0 TC) Multi-Layer Ceramic Capacitors Custom Capacitor Assemblies

Product Features

High Operating Voltage, High Operating Current, Extended Capacitance, Tighter Tolerances, High Reliability, High Q, Ultra-low ESR, Non-Magnetic


\neq Typical Applications Field

High Power RF, Medical Electronics, Broadcast, Semiconductor Manufacturing, High Magnetic Environments, Inductive Heating

Marking shown for illustration purposes only. Actual marking may differ.

茾 Part Numbering

Capacitor Size: 11P = 1111; 22P = 2225; 38P = 3838; 60P = 6040; 76P = 7676

Capacitance: For capacitor values requiring 3 significant digits,

e.g. 1222.5pF =1222R5

e.g. P6S22P101F252X

Silver bracket assembly with six 2225C pieces in parallel, Capacitance is 100pF, Capacitance tolerance is $\pm 1\%$, WVDC is 2500 V and Laser marking.

e.g. S2S25C1222R5G203X

Silver bracket assembly with two 2225C pieces in series, Capacitance is 1222.5pF,

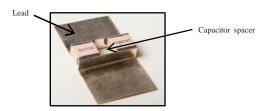
Capacitance tolerance is ±2%, WVDC is 20,000V and Laser marking.

Capacitance and Voltage

By Buyer's requirements using existing drawings, mechanical sketches, or we can help with capable modeling of assemblies thermal rise predictions.

PPICUSTOMASSEMBLIES042122RevA

sales@passiveplus.com


Parallel Assemblies

						unit:inch (millimeter)
	1111C/P	22225C/P	383	8C/P	6040C	7676C
Lead Material		Silver	plated C	Copper or	Silver	
Lead Thickness	.004 0	or .010 (0.1 or 0).25)		.010 or .02	20 (0.25 or 0.51)
Lead Length (max.)	.50 (12.7)	.75 (19.8)		2.0	0 (50.8)
Capacitor Spacer (typ.)	.050) or .078 (1.3 or	2)		.090 (2.3)	.050 or .157 (1.3 or 4)
Mounting Configuration		Н	orizonta	ul / Vertica	al	
Capacitor spacer	H		3838 S	eries/Paral	lel Combinatio	'n
Lead ↓	Marking shown for illustration purposes only. Actual marking may differ.					
						unit:inch (millimeter)
	22225C/P	3838C/			40C	7676C
Lead Type			L Br	acket		
Lead Material		Silver p	lated C	opper or	Silver	
Lead Thickness	.010 (0.25) .010 or .020 (0.25 or 0.51)					.25 or 0.51)
Lead Length (max.)	.75 (19.8) 1.0 (25.4)					
Capacitor Spacer (typ.) .050 or .157 (1.3 or 4)						
Mounting Configuration Horizontal						

• Epoxy Molding Available

Other Assemblies: By Buyer's requirement. Contact PPI.

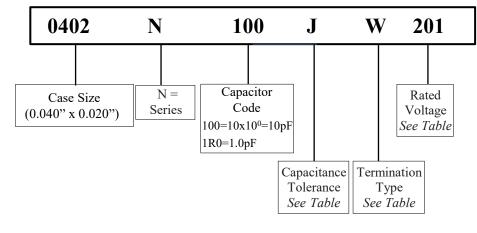
Marking shown for illustration purposes only. Actual marking may differ.

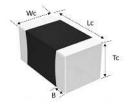
+1 (631) 425-0938

sales@passiveplus.com PPICUSTOMASSEMBLIES042122RevA

Product Features

- Lowest ESR
- Low Noise
- High Self-Resonance


Product Applications


- **Typical Functional Applications**
- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines

Part Numbering

Case Size (Chip) Dimensions

	0201	0402	0603	0805	1111
Longth (L)	0.024 ± 0.001	0.040 ± 0.004	0.062 ± 0.006	0.080 ± 0.008	0.110 + 0.020 to -0.010
Length (L _c)	(0.60 ± 0.03)	(1.02 ± 0.10)	(1.57 ± 0.15)	(2.03±0.20)	(2.79 +0.51 to -0.25)
\mathbf{W}	0.012 ± 0.001	0.020 ± 0.004	0.032 ± 0.006	0.050 ± 0.008	0.110 ± 0.015
Width (W _c)	(0.30 ± 0.03)	(0.51 ± 0.10)	(0.81 ± 0.15)	(1.27 ± 0.20)	(2.79 ± 0.38)
Thickness	0.012 ± 0.001	0.020 ± 0.004	$0.030 \pm 0.005 \text{-} 0.003$	0.040 ± 0.006	0.10
(T_c)	(0.30 ± 0.03)	(0.51 ± 0.10)	$(0.76 \pm 0.20 - 0.08)$	(1.02±0.15)	(2.60) max
$O_{\rm rest} = (D)$	0.008	0.010 ± 0.006	$0.014 {\pm} 0.006$	$0.020{\pm}0.010$	0.015
Overlap (B)	(0.20)	(0.25±0.15)	(0.35±0.15)	(0.50 ± 0.25)	(0.024) max

sales@passiveplus.com

+1 (631) 425-0938

www.passiveplus.com

† Temperature Coefficient

 $N: 0\pm 30 ppm/^{\circ}C$

† Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10

† Tolerance

	Capacitance Tolerance									
Code	A	В	C	D	F	G	J	K		
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%		

† Termination Types and Codes

Termination Code	Туре	Magnetic Termination
W ROHS	Chip	100% Sn Solder over Nickel Plating
L	Chip	90% Sn10%Pb Tin/Lead Solder over Nickel Plating

† Voltages

Code	Rated Voltage
250	25V
500	50V
251	250V
501	500V
102	1000V

茾 Laser Marking

An "X" at the end of the part number indicates the part is marked.

Laser Marking is available on the 0805N & 1111N case sizes.

Packing Orientation Option

TV: Tape carrier packaging Vertical Orientation.

Vertical orientation means that if the part is lifted from the tape without any rotation and placed on a substrate, its electrodes will be perpendicular to the substrate plane. This impacts the frequency of First Parallel Resonance (suckout).

Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

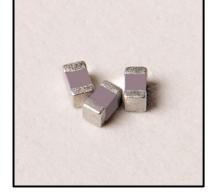
All products are in compliance with RoHS instruction.

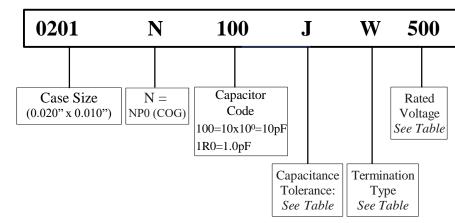
0201N (0.020" x 0.010")

Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 0.1pF to 100pF
- Working Voltage: 50V

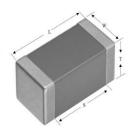
茾 Part Numbering


Product Applications


Typical Functional Applications

- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications


- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines

Capacitor Dimensions Unit: inch (millimeter)

Code	Term.	Length	Width	Thickness	Overlap
		Lc	Wc	Tc	В
W	Chip	$\begin{array}{c} 0.024 \pm 0.001 \\ (0.60 \pm 0.03) \end{array}$	$\begin{array}{c} 0.012 \pm 0.001 \\ (0.30 \pm 0.03) \end{array}$	0.012 ± 0.001 (0.30 ±0.03)	0.008 (0.20)

Capacitance Tolerance Codes

Code	Α	В	С	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com PPI0201NDATA063022RevA

0201N (0.020" x 0.010")

† '	Terminat	ions	Type and Code	÷	es		
	Termination Code		Termination		Voltage	Code	
-	W	1	100% Sn		25V	250	
_		RoHS	Solder over Nickel Plating		50V	500	

÷ 0201N Capacitance Values

For special capacitances, tolerances and WVDC, please contact PPI.

Cap.	Сар		Rated	WVDC	Cap.	Сар		Rated	WVDC	Cap.	Сар		Rated	WVD
рF	Code	Tol.	Std.	Ext.	pF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.
0.1	OR1				2.2	2R2				16	160			
0.2	OR2				2.4	2R4				18	180			
0.3	OR3				2.7	2R7				20	200			
0.4	OR4				3.0	3R0				22	220			
0.5	OR5				3.3	3R3	А,В, С,	25V	50V	24	240			
0.6	OR6				3.6	3R6	С,			27	270			
0.7	0R7				3.9	3R9				30	300			
0.8	0R8				4.3	4R3				33	330	F,G, J,K	25V	50V
0.9	0R9				4.7	4R7				36	360			
1.0	1R0				5.1	5R1	B,C, D			39	390			
1.1	1R1	А,В, С,	25V	50V	5.6	5R6				43	430			
1.2	1R2	С,			6.2	6R2				47	470			
1.3	1R3				6.8	6R8		25V	50V	51	510			
1.4	1R4				7.5	7R5				56	560			
1.5	1R5				8.2	8R2				62	620			
1.6	1R6				9.1	9R1				68	680			
1.7	1R7				10	100	F,G, J,K		50V	75	750			
1.8	1R8				11	110				82	820			
1.9	1R9				12	120		25V		91	910			
2.0	2R0				13	130	3,11			100	101			
2.1	2R1				15	150								

sales@passiveplus.com PPI0201NDATA063022RevA

0201N (0.020" x 0.010")

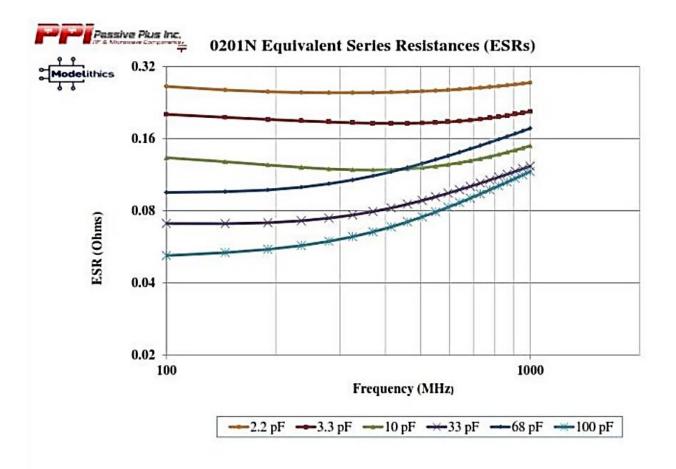
Electrical Specifications

Quality Factor (Q)	2,000 at 1 MHz min.			
Insulation Resistance (IR)	10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC			
Rated Voltage	25V or 50V			
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds			
Operating Temperature Range	-55°C to 175°C			
Temperature Coefficient (TC)	0±30ppm/°C			
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater			
Piezoelectric Effects	None			

+ Environmental Specifications

	Specification	Test Parameters				
Thermal Shock	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >10 G Ohms Q>2000 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.				
Humidity (Steady State)	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >1 G Ohms Q>300 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 106				
Low Voltage Humidity	No mechanical damage	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.				
Life	No mechanical damage Capacitance Change: ±2.0% or 0.5pF max IR: >1 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 108. For 1000 hours, at 175°C. 200% of Voltage for Capacitors				
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged	Linear pull force exerted on axial leads soldered to each terminal 2.0lbs.				
Resistance to Soldering Heat	No mechanical damage Capacitance Change: -1.0%~+2.0% IR: >10 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	Preheat device to 150° C - 180° C for 60 seconds. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 second. Measure after 24 ± 2 hour cooling period.				

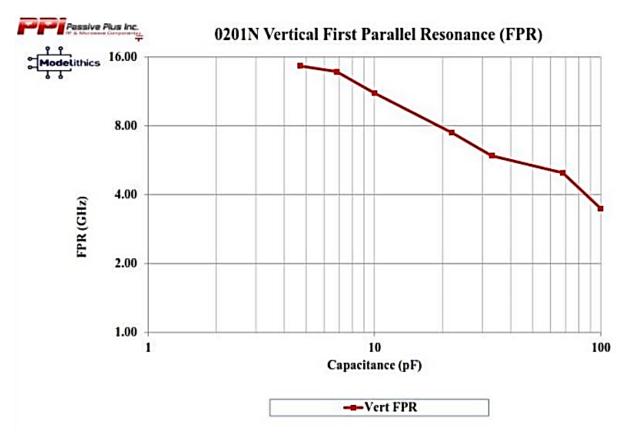
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.



sales@passiveplus.com PPI0201NDATA063022RevA

0201N (0.020" x 0.010")

+ ESR vs. Frequency


sales@passiveplus.com

PPI0201NDATA063022RevA

0201N (0.020" x 0.010")

First Parallel Resonance

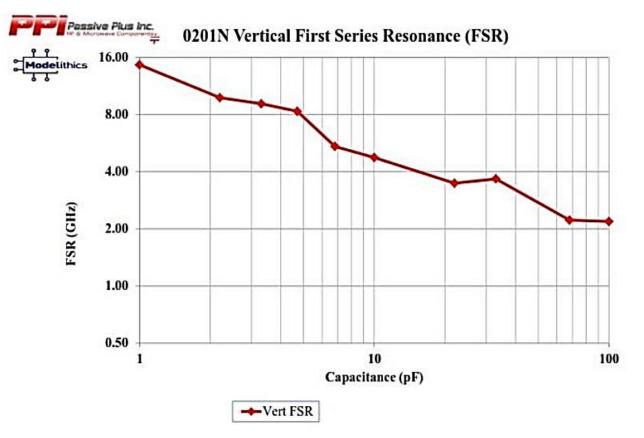
÷ Definitions and Measurement Conditions

The **First Parallel Resonance**, **FPR**, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A vertical orientation means the electrode planes are perpendicular to the substrate.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RO3006; substrate dielectric constant = 6.15; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 6.0; microstrip trace width (mils) = 14.1; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

www.passiveplus.com


+1 (631) 425-0938

sales@passiveplus.com PPI0201NDATA063022RevA

0201N (0.020" x 0.010")

First Series Resonance

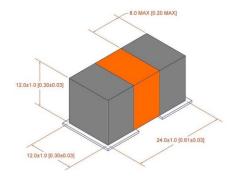
Definitions and Measurement Conditions

The **First Series Resonance, FSR,** is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] =0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RO3006; substrate dielectric constant = 6.15; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 6.0; microstrip trace width (mils) = 14.1; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

www.passiveplus.com


+1 (631) 425-0938

sales@passiveplus.com PPI0201NDATA063022RevA

Capacitor Application Program

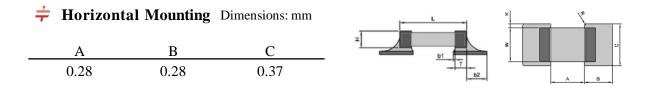
Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Modelithics Vendor Program

PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

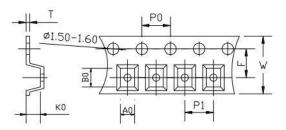
Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (<u>http://passiveplus.com/addldocs_resources.php</u>).

#Modelithics®


0201N (0.020" x 0.010")

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.


1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Tape & Reel Specifications Dimensions: mm

Horizontal Orientation

Dimensions: mm

Orientation	A0	B 0	K0	W	P0	P1	Т	F	Qty Min	Qty/ reel	Tape Material
Horizontal	0.406	0.749	0.422	8.00	4.00	2.00	0.42	3.50	500	500	Paper

sales@passiveplus.com

PPI0201NDATA063022RevA

0201N (0.020" x 0.010")

≠ Engineering Design Kits

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

Kits are 100% RoHS compliant.

Kit Number	Value Range	Values	
DKD0201N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.9, 2.0pF	RoHS
DKD0201N02	1.0 - 10pF	1.0, 1.3, 1.5, 1.7, 1.9, 2.0, 2.2, 2.7, 3.0, 3.9, 4.7, 5.6, 6.8, 7.5, 8.2, 10pF	ROHS
DKD0201N03	10 - 100pF	10, 13, 15, 18, 20, 22, 27, 30, 39, 47, 56, 68, 75, 82, 91, 100pF	ROHS

sales@passiveplus.com PPI0201NDATA063022RevA

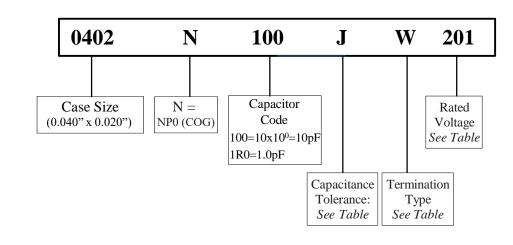
0402N (0.040" x 0.020")

Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 0.1pF to 33pF

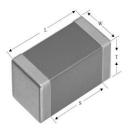
Part Numbering

• Working Voltage: 200V


+ + Product Applications

- **Typical Functional Applications**
- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications


- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines

† Capacitor Dimensions Unit: inch (millimeter)

Code	Term.	Length	Width	Thickness	Overlap	
		Lc	Wc	Тс	В	
W	Chip	$\begin{array}{c} 0.040 \pm 0.004 \\ (1.02 \pm 0.10) \end{array}$	$\begin{array}{c} 0.020 \pm 0.004 \\ (0.51 \pm 0.10) \end{array}$	$\begin{array}{c} 0.020 \pm 0.004 \\ (0.51 \pm 0.10) \end{array}$	0.010±0.006 (0.25±0.15)	

÷ Capacitance Tolerance Codes

Code	Α	В	С	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com PPI0402NDATA063022RevA

0402N (0.040" x 0.020")

tions	≠ Voltage Code			
	Termination		Voltage	
1	100% Sn		50V	
RoHS	Solder over Nickel Plating		200V	
	tion	100% Sn	tion Termination 100% Sn	tion Termination 100% Sn 50V

Voltage	Code
50V	500
200V	201
250V	251

÷ 0402N Capacitance Values

For special capacitances, tolerances and WVDC, please contact PPI.

Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC																								
рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.																								
0.1	OR1				1.7	1R7	А,В,	50V		6.8	6R8		501/																									
0.2	OR2				1.8	1R8	А,В, С,D	or		250V	7.5	7R5	А,В,	50V or	N/A																							
0.3	OR3				1.9	1R9		200V		8.2	8R2	С	200V	,,,																								
0.4	OR4				2.0	2R0				9.1	9R1																											
0.5	OR5			2.1 2R1			10	100																														
0.6	OR6				2.2	2R2		50V	50V		11	110																										
0.7	OR7		501/			or	250V	12	2 120																													
0.8	OR8	А,В,	50V or			, or		50V or						250V	2.7	2R7		200V		13	130																	
0.9	OR9	C,D	200V	2300	3.0	3R0				15	150	ГC																										
1.0	1R0				3.3	3R3				16	160	F,G, J,K		N/A																								
1.1	1R1				3.6	3R6				18	180		200V																									
1.2	1R2																												3.9	3R9			20		200			
1.3	1R3				4.3	4R3		50V		22	220																											
1.4	1R4				4.7	4R7	А,В, С,D	or	N/A	24	240																											
1.5	1R5				5.1	5R1	,	200V		27	270																											
1.6	1R6				5.6	5R6				30	300	F,G,	50V	N/A																								
					6.2	6R2				33	330	J,K	500																									

sales@passiveplus.com

PPI0402NDATA063022RevA

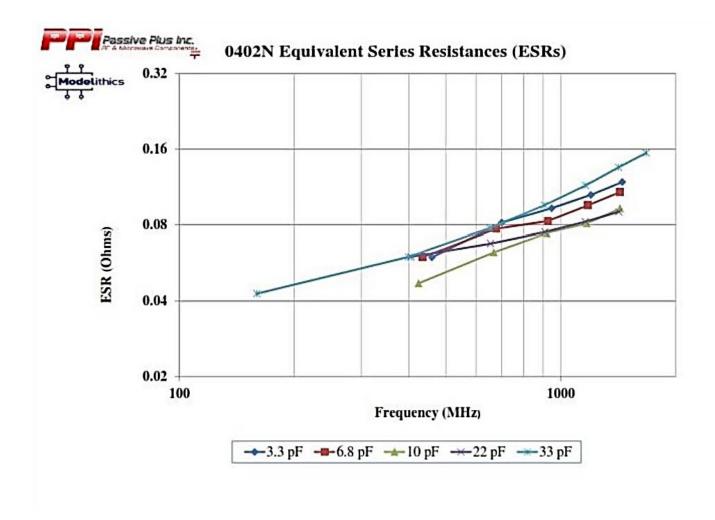
0402N (0.040" x 0.020")

Electrical Specifications

Quality Factor (Q)	2,000 at 1 MHz min.
Insulation Resistance (IR)	10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	See Rated Voltage
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds
Operating Temperature Range	-55°C to 175°C
Temperature Coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None

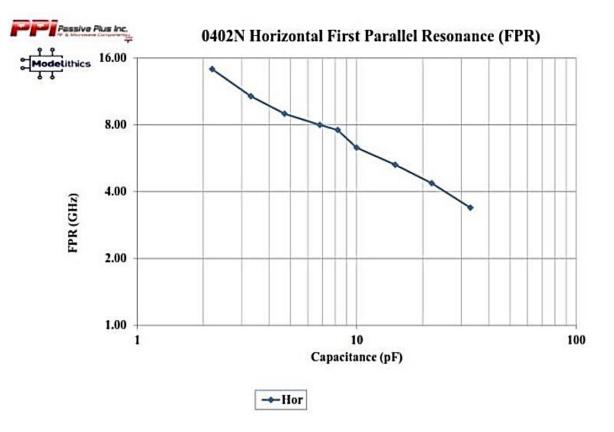
† Environmental Specifications

	Specification	Test Parameters
Thermal Shock	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >10 G Ohms Q>2000 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Humidity (Steady State)	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >1 G Ohms Q>300 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 106
Low Voltage Humidity	No mechanical damage	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance Change: ±2.0% or 0.5pF max IR: >1 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 108. For 1000 hours, at 175°C. 200% of Voltage for Capacitors
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged	Linear pull force exerted on axial leads soldered to each terminal 2.0lbs.
Resistance to Soldering Heat	No mechanical damage Capacitance Change: -1.0%~+2.0% IR: >10 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	Preheat device to 150° C - 180° C for 60 seconds. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 second. Measure after 24 ± 2 hour cooling period.


Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

0402N (0.040" x 0.020")

÷ ESR vs. Frequency


sales@passiveplus.com

PPI0402NDATA063022RevA

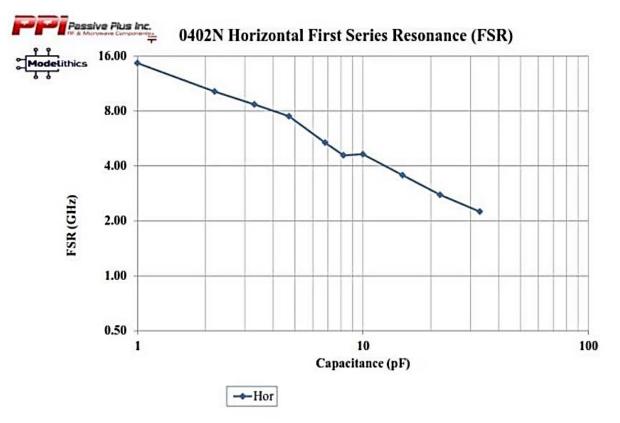
0402N (0.040" x 0.020"

First Parallel Resonance

÷ Definitions and Measurement Conditions

The **First Parallel Resonance**, **FPR**, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A vertical orientation means the electrode planes are perpendicular to the substrate.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.48; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 15; microstrip trace width (mils) = 22; Reference planes at sample edges.


All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

0402N (0.040" x 0.020"

First Series Resonance

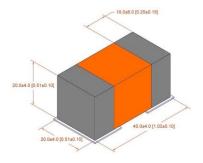
† Definitions and Measurement Conditions

The **First Series Resonance, FSR,** is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] =0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.48; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 15; microstrip trace width (mils) = 22; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

www.passiveplus.com


+1 (631) 425-0938

sales@passiveplus.com PPI0402NDATA063022RevA

Capacitor Application Program

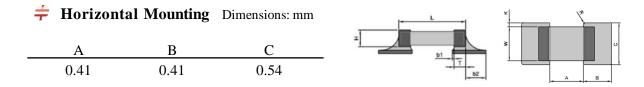
Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Modelithics Vendor Program

PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

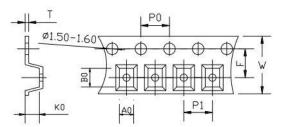
Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (<u>http://passiveplus.com/addldocs_resources.php</u>).

#Modelithics®


0402N (0.040" x 0.020"

Free Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.


1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Tape & Reel Specifications Dimensions: mm

Horizontal Orientation

Orientation	A0	BO	K0	W	P0	P1	Т	F	Qty Min	Qty/ reel	Tape Material
Horizontal	0.60	1.10	1.00	8.00	4.00	2.00	0.20	3.50	500	500	Paper

sales@passiveplus.com

PPI0402NDATA063022RevA

+1 (631) 425-0938

www.passiveplus.com

Multi-Layer Ceramic Capacitors

EIA Low ESR

0402N (0.040" x 0.020")

🗧 Engineering Design Kits

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

Kits are 100% RoHS compliant.

Kit Number	Value Range	Values	
DKD0402N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF	ROHS
DKD0402N02	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF	ROHS
DKD0402N03	10 - 33pF	10, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33pF	ROHS

sales@passiveplus.com

PPI0402NDATA063022RevA

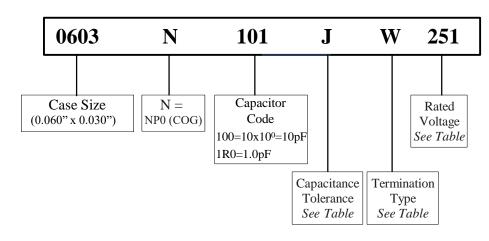
0603N (0.060" x 0.030")

Product Features

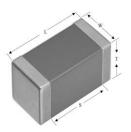
- High Q •
- High Power •
- Low ESR/ESL
- Low Noise
- High Self-Resonance •
- Ultra Stable Performance
- Capacitance Range: • 0.1pF to 100pF
- Working Voltage: 250V

\neq Product Applications

- **Typical Functional Applications**
- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching


Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines



茾 Part Numbering

‡ Capacitor Dimensions Unit: inch (millimeter)

(Code	Term.	Length	Width	Thickness	Overlap
			Lc	Wc	Тс	В
	W	Chip	$\begin{array}{c} 0.062 \pm 0.006 \\ (1.57 \pm 0.15) \end{array}$		$\begin{array}{c} 0.030 \pm 0.005 0.003 \\ (0.76 \pm 0.20 0.08) \end{array}$	

\neq Capacitance Tolerance Codes

Code	Α	В	С	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com PPI0603NDATA063022RevA

0603N (0.060" x 0.030")

Terminatio	ons	Types and Codes
Terminatio Code	n	Termination
W	RoHS	100% Sn Solder over Nickel Plating
L		90% Sn10% Pb Tin/Lead

茾 Voltage C	ode
-------------	-----

 Voltage
 Code

 250V
 251

÷ 0603N Capacitance Values

For special capacitances, tolerances and WVDC, please contact PPI.

Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC
0.1	OR1			1.7	1R7			6.2	6R2			30	300		
0.2	OR2			1.8	1R8			6.8	6R8			33	330		
0.3	OR3			1.9	1R9			7.5	7R5	А,В, С	250V	36	360		
0.4	0R4			2.0	2R0			8.2	8R2			39	390		
0.5	OR5			2.1	2R1			9.1	9R1			43	430		
0.6	OR6			2.2	2R2			10	100			47	470		
0.7	0R7			2.4	2R4			11	110			51	510	F,G,	250V
0.8	OR8	А,В,	250V	2.7	2R7	А,В,	250V	12	120			56	560	J,K	
0.9	OR9	C,D		3.0	3R0	C,D		13	130			62	620		
1.0	1R0			3.3	3R3			15	150	F,G,		68	680		
1.1	1R1			3.6	3R6			16	160	J,K	250V	75	750		
1.2	1R2			3.9	3R9			18	180			82	820		
1.3	1R3			4.3	4R3			20	200			91	910		
1.4	1R4			4.7	4R7			22	220			100	101		
1.5	1R5			5.1	5R1			24	240						
1.6	1R6			5.6	5R6			27	270						

sales@passiveplus.com

PPI0603NDATA063022RevA

0603N (0.060" x 0.030")

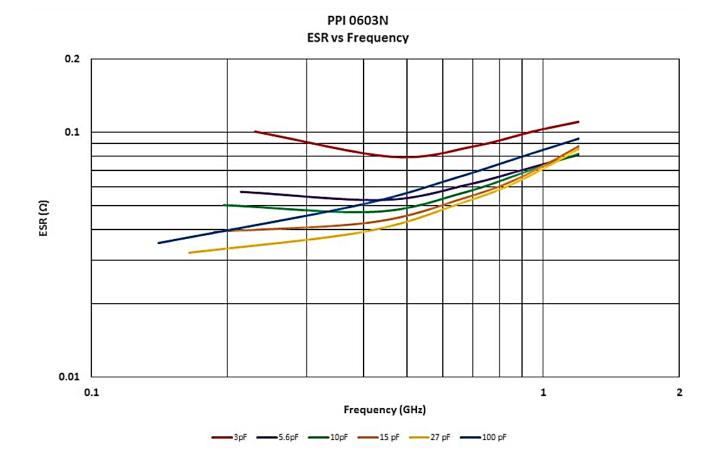
Electrical Specifications

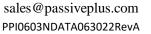
Quality Factor (Q)	2,000 at 1 MHz min.
Insulation Resistance (IR)	10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC
Rated Voltage	250V
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds
Operating Temperature Range	-55°C to 175°C
Temperature Coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or $\pm 0.02 \text{pF}$, whichever is greater
Piezoelectric Effects	None

÷ Environmental Specifications

	Specification	Test Parameters
Thermal Shock	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >10 G Ohms Q>2000 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Humidity (Steady State)	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >1 G Ohms Q>300 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 106
Low Voltage Humidity	No mechanical damage	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance Change: ±2.0% or 0.5pF max IR: >1 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 108. For 1000 hours, at 175°C. 200% of Voltage for Capacitors
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged	Linear pull force exerted on axial leads soldered to each terminal 2.0lbs.
Resistance to Soldering Heat	No mechanical damage Capacitance Change: -1.0%~+2.0% IR: >10 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	Preheat device to 150° C - 180° C for 60 seconds. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 second. Measure after 24 ± 2 hour cooling period.

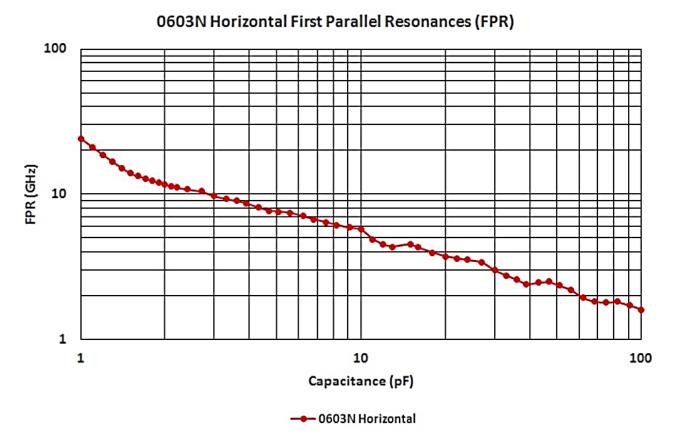
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.




sales@passiveplus.com PPI0603NDATA063022RevA

0603N (0.060" x 0.030")

ESR vs. Frequency



Passive Plus Inc. RF & Microwave Components

0603N (0.060" x 0.030")

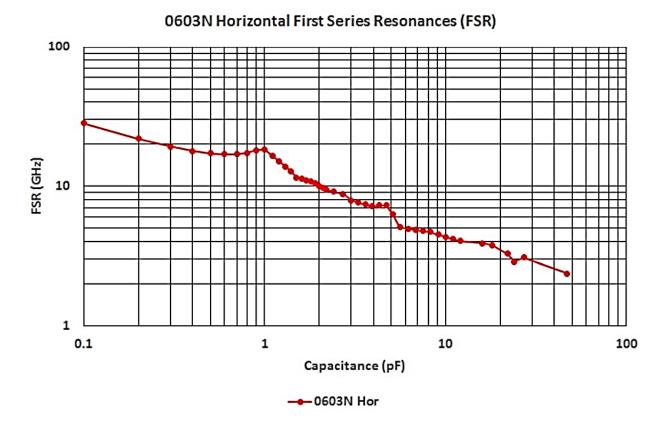
First Parallel Resonance

÷ Definitions and Measurement Conditions

The **First Parallel Resonance**, **FPR**, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A vertical orientation means the electrode planes are perpendicular to the substrate.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RT/duriod® 5880; substrate dielectric constant = 2.20; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 23.7; microstrip trace width (mils) = 30.0; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.


www.passiveplus.com

sales@passiveplus.com PPI0603NDATA063022RevA

0603N (0.060" x 0.030"

First Series Resonance

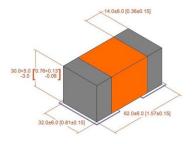
+ Definitions and Measurement Conditions

The **First Series Resonance**, **FSR**, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] =0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RT/duriod® 5880; substrate dielectric constant = 2.20; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 23.7; microstrip trace width (mils) = 30.0; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

www.passiveplus.com


+1 (631) 425-0938

sales@passiveplus.com PPI0603NDATA063022RevA

Capacitor Application Program

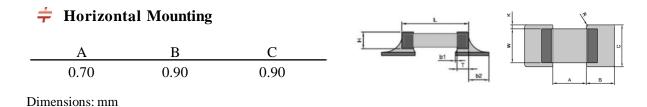
Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Modelithics Vendor Program

PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

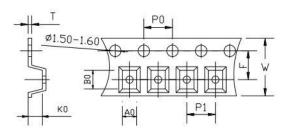
Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (<u>http://passiveplus.com/addldocs_resources.php</u>).

#Modelithics®


0603N (0.060" x 0.030"

; **Recommended Land Pattern Dimensions**

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.


1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Tape & Reel Specifications Dimensions: mm

Orientation	A0	B0	K0	W	PO	P1	Т	F	Qty Min	Qty/ reel	Tape Material
Horizontal	0.95	1.80	0.85	8.00	4.00	4.00	0.20	3.50	500	500	Paper
Dimensions: m	nm										

ALLER CONTRACTOR

www.passiveplus.com

sales@passiveplus.com PPI0603NDATA063022RevA

0603N (0.060" x 0.030")

茾 Engineering Design Kits

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

Kits are 100% RoHS compliant.

Kit Number	Value Range	Values	
DKD0603N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.6, 1.8, 2.0pF	ROHS
DKD0603N02	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF	ROHS
DKD0603N03	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 100pF	ROHS

sales@passiveplus.com PPI0603NDATA063022RevA

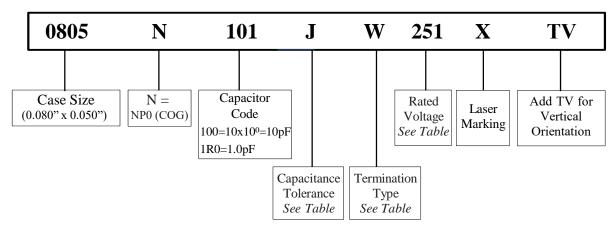
0805N (0.080" x 0.050")

Product Features

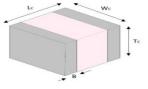
- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 0.1pF to 220pF

F **Product Applications**

- **Typical Functional Applications**
- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching


Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines


Marking shown for illustration purposes only. Actual marking may differ.

≠ Part Numbering

Capacitor Dimensions Unit: inch (millimeter)

Code	Term.	Length	Width	Thickness	Overlap
		Lc	Wc	Tc	В
W	Chip	0.080 ± 0.008 (2.03 ± 0.20)	$\begin{array}{c} 0.050 \pm 0.008 \\ (1.27 \pm 0.20) \end{array}$	0.040±0.006 (1.02±0.15)	0.020±0.010 (0.50±0.25)

Capacitance Tolerance Codes

Code	Α	В	С	D	F	G	J	К
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

sales@passiveplus.com PPI0805NDATA063022RevA

0805N (0.080" x 0.050")

Terminat	ions	Types and Codes
Terminat Code	ion	Termination
W	ROHS	100% Sn Solder over Nickel Plating
L		90% Sn10% Pb Tin/Lead

<i>‡</i> Voltage	Code
--------------------------------	------

Voltage	Code
250V	251

≠ 0805N Capacitance Values

For special capacitances, tolerances and WVDC, please contact PPI.

Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC	
0.1	OR1			2.1	2R1			13	130			91	910			
0.2	0R2			2.2	2R2		15	150			100	101				
0.3	OR3			2.4	2R4			16	160			110	111			
0.4	0R4			2.7	2R7			18	180			120	121			
0.5	OR5			3.0	3R0			20	200			130	131	F,G,J,K	250V	
0.6	OR6			3.3	3R3			22	220			150	151	1,0,3,1	2500	
0.7	0R7			3.6	3R6	А,В, С,D	250V	24	240			160	161			
0.8	OR8			3.9	3R9			27	270			180	181			
0.9	0R9			4.3	4R3				30	300			200	201		
1.0	1R0	А,В,	250V	4.7	4R7			33	330	F,G,	250V	220	221			
1.1	1R1	C,D	2001	5.1	5R1			36	360	J,K	2001					
1.2	1R2			5.6	5R6			39	390							
1.3	1R3			6.2	6R2			43	430							
1.4	1R4			6.8	6R8			47	470							
1.5	1R5			7.5	7R5	B,C	250V	51	510							
1.6	1R6			8.2	8R2	_,_		56	560							
1.7	1R7			9.1	9R1			62	620							
1.8	1R8			10	100	F,G,		68	680							
1.9	1R9			11	110	г,G, Ј,К	250V	75	750							
2.0	2R0			12	120			82	820							

sales@passiveplus.com

PPI0805NDATA063022RevA

www.passiveplus.com

0805N (0.080" x 0.050")

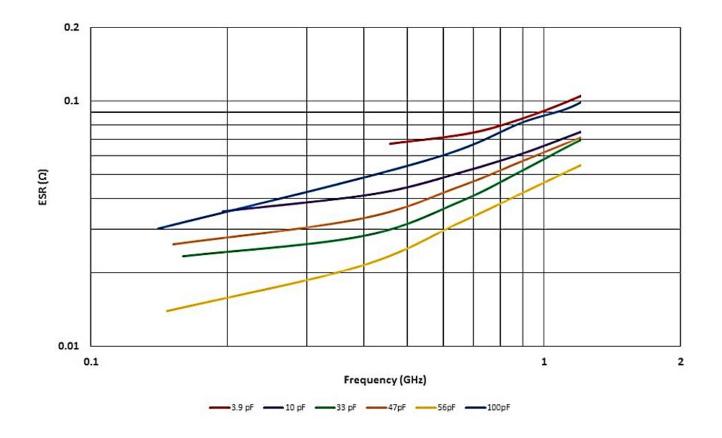
Electrical Specifications

Quality Factor (Q)	2,000 at 1 MHz min.							
Insulation Resistance (IR)	10 ⁵ Megaohms min. (a) +25°C rated WVDC 10 ⁴ Megaohms min. (a) +125°C rated WVDC							
Rated Voltage	250V							
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds							
Operating Temperature Range	-55°C to 175°C							
Temperature Coefficient (TC)	0±30ppm/°C							
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater							
Piezoelectric Effects	None							

Environmental Specifications

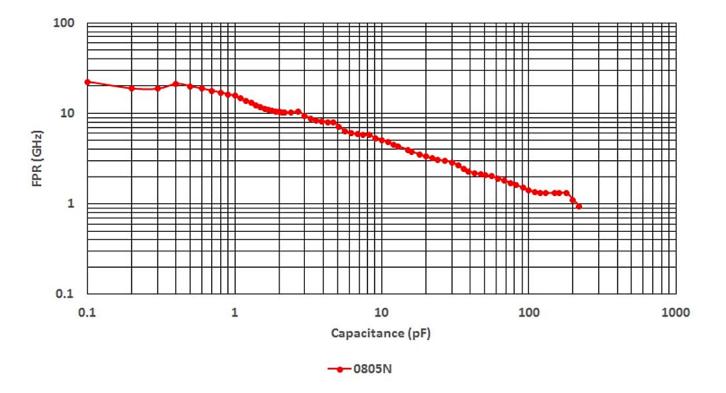
	Specification	Test Parameters						
Thermal Shock	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >10 G Ohms Q>2000 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.						
Humidity (Steady State)	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >1 G Ohms Q>300 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 106						
Life	No mechanical damage	 MIL-STD-202, Method 108. For 1000 hours, at 175°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC 						
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.						
Resistance to Soldering Heat	No mechanical damage Capacitance Change: -1.0%~+2.0% IR: >10 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	Preheat device to 150° C - 180° C for 60 seconds. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 second. Measure after 24 ± 2 hour cooling period.						

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.



sales@passiveplus.com PPI0805NDATA063022RevA

0805N (0.080" x 0.050")


sales@passiveplus.com

PPI0805NDATA063022RevA

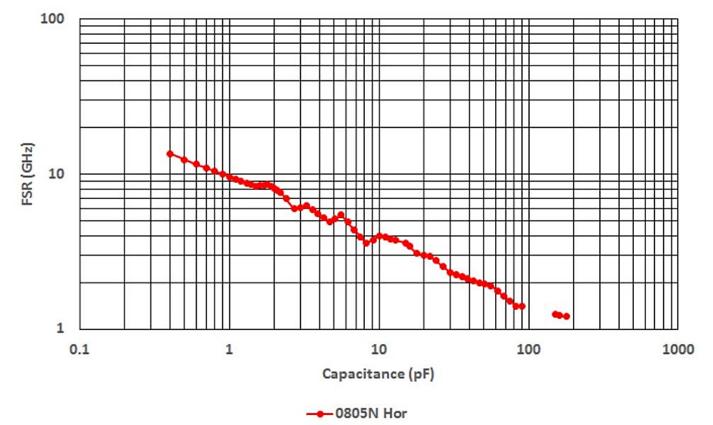
0805N (0.080" x 0.050")

茾 First Parallel Resonance

÷ Definitions and Measurement Conditions

The **First Parallel Resonance**, **FPR**, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RO3003; substrate dielectric constant = 3.00; substrate thickness (mils) = 23; gap in microstrip trace (mils) = 23.6; microstrip trace width (mils) = 57.1; Reference planes at sample edges.


All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

0805N (0.080" x 0.050")

First Series Resonance

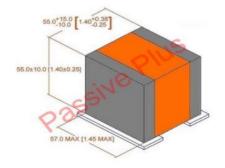
+ Definitions and Measurement Conditions

The **First Series Resonance, FSR,** is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] =0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with 50-Ohm termination. The measurement conditions are: substrate – Rogers RO3003; substrate dielectric constant = 3.00; substrate thickness (mils) = 23; gap in microstrip trace (mils) = 23.6; microstrip trace width (mils) = 57.1; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

www.passiveplus.com


+1 (631) 425-0938

sales@passiveplus.com PPI0805NDATA063022RevA

+ Capacitor Application Program

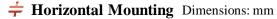
Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Modelithics Vendor Program

PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (<u>http://passiveplus.com/addldocs_resources.php</u>).

#Modelithics®


0805N (0.080" x 0.050")

Free Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

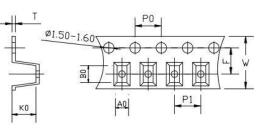
1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

+	Vertical	Mounting	Dimensions: mm
	А	В	С
	1.10	1.10	1.40

Ø1.50-1.60

KO


÷

Tape & Reel Specifications Dimensions: mm

AQ

Horizontal Orientation

Vertical Orientation

Case Size	Orientation	Measurement Unit	W	P0	P1	Т	F	Minimum Qty per Reel	Std Qty per Reel	Tape Material
	Н	in.	0.315	0.157	0.157	0.009	0.138	500	3000	Plastic
0805N		mm	8.00	4.00	4.00	0.22	3.50	500	3000	riastic
08031	V	in.	0.315	0.157	0.157	0.009	0.138	500	1000	Plastic
		mm	8.00	4.00	4.00	0.22	3.50	500	1000	Plastic

www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com PPI0805NDATA063022RevA

0805N (0.080" x 0.050")

Engineering Design Kits

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

Kits are 100% RoHS compliant.

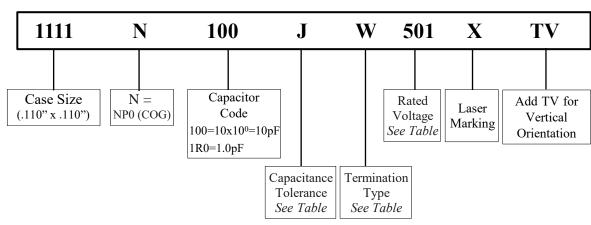
Kit Number	Value Range	Values	
DKD0805N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF	ROHS
DKD0805N02	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF	ROHS
DKD0805N03	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	ROHS
DKD0805N04	10 - 220pF	10, 15, 18, 20, 24, 27, 30, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220pF	ROHS

+1 (631) 425-0938

sales@passiveplus.com PPI0805NDATA063022RevA

Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 0.2pF to 1000pF


Product Applications

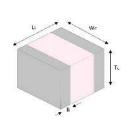
- **Typical Functional Applications**
- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines

Part Numbering

Capacitor Dimensions Unit: inch (millimeter)


Code	Term.	Length	Width	Thickness	Overlap
		Lc	Wc	Tc	В
W	Chip	0.110 + 0.020 to -0.010 (2.79 +0.51 to -0.25)	$\begin{array}{c} 0.110 \pm 0.015 \\ (2.79 \pm 0.38) \end{array}$	0.10 (2.60 max)	0.015 (0.024 max)

Capacitance Tolerance Codes

Code	Α	В	C D		F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

sales@passiveplus.com PPI1111NDATA063022RevA

Marking shown for illustration purposes only. Actual marking may differ.

11111N (0.110" x 0.110")

† Terminations Types and Codes

Terminat Code	ion	Termination					
W	Roms	100% Sn Solder over Nickel Plating					
L		90% Sn10% Pb Tin/Lead					

† Voltage Code

Voltage	Code
100V	101
200V	201
500V	501
1000V	102

Marking shown for illustration purposes only. Actual marking may differ.

† 1111N Capacitance Values

For special capacitances, tolerances and WVDC, please contact PPI.

Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC									
рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.									
0.2	OR2				2.7	2R7					22	220				180	181	F,G,	500V	1000V								
0.3	OR3				3.0	3R0				24	240				200	201	J,K	3001	10001									
0.4	OR4				3.3	3R3				27	270				220	221												
0.5	OR5				3.6	3R6	А,В, С,D	500V	1000V	30	300				240	241												
0.6	OR6				3.9	3R9	0,2			33	330				270	271												
0.7	OR7				4.3	4R3				36	360				300	301	F,G, J,K	200V	500V									
0.8	OR8				4.7	4R7				39	390				330	331	5,10											
0.9	OR9				5.1	5R1		500V 1000V	43	430				360	361													
1.0	1R0				5.6	5R6				47	470				390	391												
1.1	1R1				6.2	6R2			B,C, D 500V	5007 1	5000 10		51	510				430	431	G,J,	200V	500V						
1.2	1R2	А,В,	500V	1000V	6.8	6R8						1000V	56	560	F,G,	500V	1000V	470	471	К	2000	5000						
1.3	1R3	C,D	3000	10000	7.5	7R5	5												62	620	J,K	3000	10000	510	511			
1.4	1R4				8.2	8R2										68	680				560	561	G,J, K	100V	500V			
1.5	1R5				9.1	9R1				75	750				620	621	N N											
1.6	1R6				10	100				82	820				680	681												
1.7	1R7				11	110				91	910				750	751												
1.8	1R8				12	120				100	101				820	821	G,J, K	50V	N/A									
1.9	1R9				13	130	F,G,	5001/	10001/	110	111				910	911	ĸ											
2.0	2R0				15	150	J,K	500V	1000V	120	121				1000	102												
2.1	2R1				16	160				130	131																	
2.2	2R2				18	180				150	151																	
2.4	2R4				20	200				160	161																	

sales@passiveplus.com

PPI1111NDATA063022RevA

1111N (0.110" x 0.110")

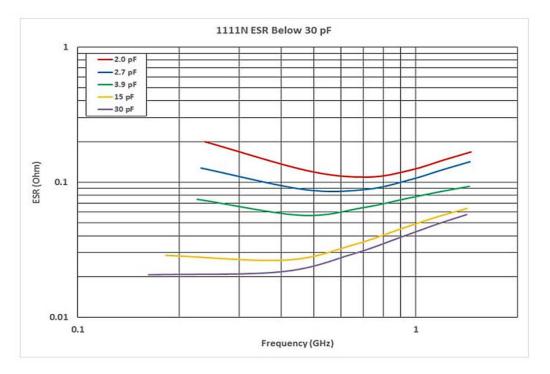
Electrical Specifications

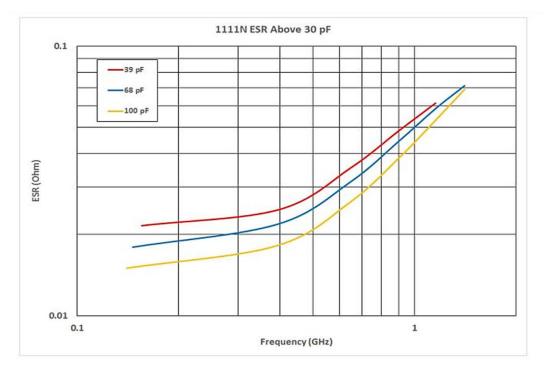
Quality Factor (Q)	2,000 at 1 MHz min.	
Insulation Resistance (IR)	10 ⁵ Megaohms min. @ +25°C rated WVDC 10 ⁴ Megaohms min. @ +125°C rated WVDC	
Rated Voltage	See Rated Voltage Table	
Dielectric Withstanding Voltage (WVDC)	250% of Rated Voltage of 5 seconds, Rated Voltage \leq 500VDC 150% of Voltage for 5 seconds, 500VDC <rated <math="" voltage="">\leq 1250 VDC 120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>	
Operating Temperature Range	-55°C to 175°C	
Temperature Coefficient (TC)	0±30ppm/°C	
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater	
Piezoelectric Effects	None	

Environmental Specifications

Specification		Test Parameters
Thermal Shock	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >1 G Ohms Q>500	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 106
Humidity (Steady State)	No mechanical damage Capacitance Change: ±0.5% or 0.5pF max IR: >1 G Ohms Q>300 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance Change: ±2.0% or 0.5pF max IR: >1 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	MIL-STD-202, Method 108. For 1000 hours, at 175°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance to Soldering Heat	No mechanical damage Capacitance Change: - 1.0%~+2.0 IR: >1 G Ohms Q>500 Breakdown Voltage: 2.5x WVDC	Preheat device to 150°C -180°C for 60 seconds. Dip in 260°C ±5C solder for 10 ±1 second. Measure after 24± 2 hour cooling period.

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.


+1 (631) 425-0938

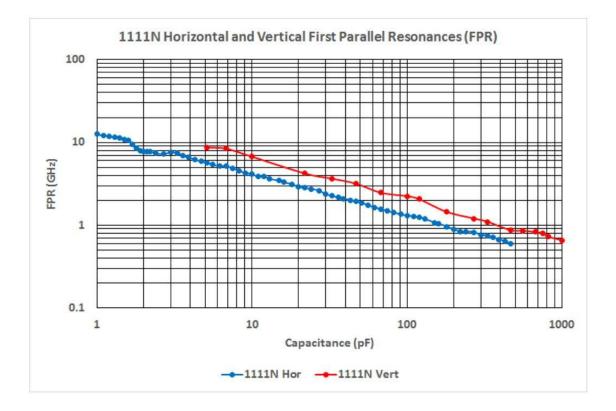

sales@passiveplus.com PPI1111NDATA063022RevA

1111N (0.110" x 0.110")

÷ ESR vs. Frequency

sales@passiveplus.com

PPI1111NDATA063022RevA


+1 (631) 425-0938

EIA Low ESR Multi-Layer Ceramic Capacitors

11111N (0.110" x 0.110")

First Parallel Resonance

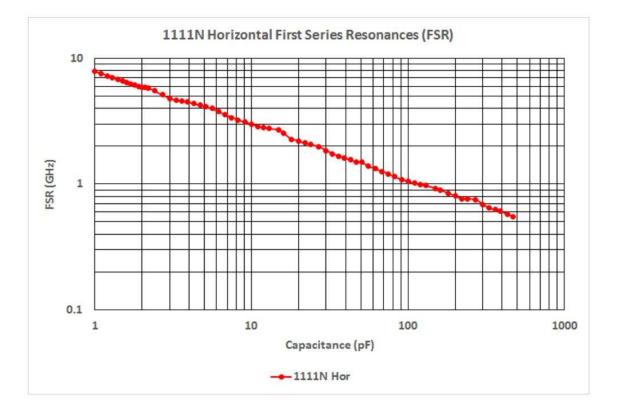
† Definitions and Measurement Conditions

The **First Parallel Resonance**, **FPR**, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

The definitions on the carts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.48; horizontal mount substrate thickness (mils) = 55; vertical mount substrate thickness (mils) = 45; gap in microstrip trace (mils) = 61.1; horizontal mount microstrip trace width (mils) = 123.7; vertical mount microstrip trace width (mils) = 101.0. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

www.passiveplus.com


+1 (631) 425-0938

EIA Low ESR Multi-Laver Ceramic Capacitors

11111N (0.110" x 0.110")

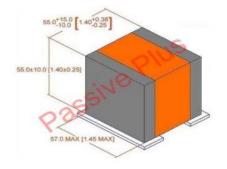
🗧 First Series Resonance

Definitions and Measurement Conditions

The **First Series Resonance**, **FSR**, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

The definitions on the carts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.48; horizontal mount substrate thickness (mils) = 55; vertical mount substrate thickness (mils) = 45; gap in microstrip trace (mils) = 61.1; horizontal mount microstrip trace width (mils) = 123.7; vertical mount microstrip trace width (mils) = 101.0. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.


www.passiveplus.com

+1 (631) 425-0938

Capacitor Application Program

Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Modelithics Vendor Program

PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (<u>http://passiveplus.com/addldocs_resources.php</u>).

#Modelithics®

www.passiveplus.com

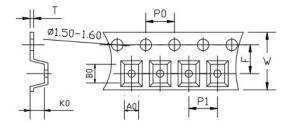
+1 (631) 425-0938

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

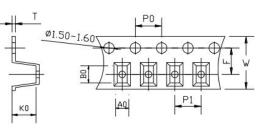
2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


+ Horizontal Mounting Dimensions: mm

茾 Vertical N	Mounting	Dimensions: mm
Α	В	С
1.90	1.70	2.50

Tape & Reel Specifications Dimensions: mm

Horizontal Orientation



Orientation	A0	B0	K0	W	PO	P1	Т	F	Qty Min	Qty/ reel	Tape Material
Horizontal	2.92	3.51	2.34	8.00	4.00	4.00	0.254	3.50	500	500	Embossed
Vertical	2.92	3.51	2.34	12.00	4.00	4.00	0.254	3.50	500	500	Embossed

Dimensions: mm

Vertical Orientation

PPP Passive Plus Inc. RF & Microwave Components

1111N (0.110" x 0.110"

EIA Low ESR Multi-Layer Ceramic Capacitors

1111N (0.110" x 0.110")

🗧 Engineering Design Kits

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

Kits are 100% RoHS compliant.

Kit Number	Value Range	Values	
DKD1111N01	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF	Roms
DKD1111N02	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	Roms
DKD1111N03	100 - 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000pF	RoHS

+1 (631) 425-0938

sales@passiveplus.com PPICUSTOM&DKDKITS051622RevA

www.passiveplus.com

Engineering Design Kits

According to the customer's demand, PPI can provide many kinds of tool kits for engineers to design and debug the circuit. All of our products satisfy the requirement of RoHS instruction.

PPI also offers kits for Non-Magnetic MRI applications. Engineering design kits are also available in multiple sizes as well. All kits are RoHS Compliant.

Standard Values updated in 2022.

www.passiveplus.com

	Kit N MAGNETIC	umber NON-MAGNETIC	Value Range	Values
	DKD0505C01	DKD0505C05	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF
_	DKD0505P01	DKD0505P05	0.1 - 2.0pr	0.1, 0.2, 0.5, 0.1, 0.5, 0.0, 0.7, 0.0, 0.7, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0pr
	DKD0505C02	DKD0505C06	1 10mE	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF
	DKD0505P02	DKD0505P06	1 - 10pF	1.0, 1.2, 1.3, 1.0, 2.0, 2.2, 2.4, 2.7, 5.0, 5.5, 5.9, 4.7, 5.0, 0.8, 8.2, 10pr
	DKD0505C03	DKD0505C07	10 100-E	10 12 15 10 20 22 24 27 20 22 20 47 5((0 02 100 F
	DKD0505P03	DKD0505P07	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF
	DKD0505C04	DKD0505C08	100 - 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000pF
_	DKD1111C01	DKD1111C05	1.0.10mE	10 12 15 18 20 22 24 27 20 22 20 47 56 68 82 10mE
	DKD1111P01	DKD1111P05	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF
	DKD1111C02	DKD1111C06	10 100mE	10 12 15 19 20 22 24 27 20 22 20 47 56 69 82 100-E
	DKD1111P02	DKD1111P06	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF
	DKD1111C03	DKD1111C07	100 1000 E	
	DKD1111P03	DKD1111P07	100 - 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000pF
	DKD1111C04	DKD1111C08	1000 10000-F	1000, 1100, 1200, 1500, 1800, 2000, 2200, 2700, 3000, 3300, 3900, 4700, 5100,
	DKD1111P04	DKD1111P08	1000 - 10000pF	5600, 10000pF

sales@passiveplus.com PPICUSTOM&DKDKITS051622RevA

Engineering Design Kits

EIA Low ESI Kit Number	R Design Kits Value Range	Values
DKD0201N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.9, 2.0pF
DKD0201N02	1.0 - 10pF	1.0, 1.3, 1.5, 1.7, 1.9, 2.0, 2.2, 2.7, 3.0, 3.9, 4.7, 5.6, 6.8, 7.5, 8.2, 10pF
DKD0201N03	10 - 100pF	10, 13, 15, 18, 20, 22, 27, 30, 39, 47, 56, 68, 75, 82, 91, 100pF
DKD0402N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF
DKD0402N02	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF
DKD0402N03	10 - 33pF	10, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33pF
DKD0603N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.6, 1.8, 2.0pF
DKD0603N02	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF
DKD0603N03	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 100pF
DKD0805N01	0.1 - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF
DKD0805N02	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF
DKD0805N03	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF
DKD0805N04	10 - 220pF	10, 15, 18, 20, 24, 27, 30, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220pF
DKD1111N01	1.0 - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF
DKD1111N02	10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF
DKD1111N03	100 - 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820 1000pF
	1	

sales@passiveplus.com PPICUSTOM&DKDKITS051622RevA

Custom Kits

According to the customer's demand, PPI can provide many kinds of tool kits for engineers to design and debug the circuit. All our products satisfy the requirement of RoHS instruction.

Passive Plus will develop a custom kit using the engineer's specific requirements for the engineer's projects (case size, temperature coefficient, value range, tolerances, voltages, and quantities per value). Once these requirements are determined, PPI will then provide customer with a price. Please contact PPI directly to start this process.

All kits are RoHS Compliant.

+1 (631) 425-0938 sales@passiveplus.com PPICUSTOM&DKDKITS051622RevA

www.passiveplus.com

Custom Kits

sales@passiveplus.com PPICUSTOM&DKDKITS051622RevA

+1 (631) 425-0938

www.passiveplus.com

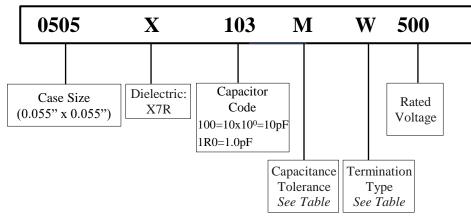
0505X (0.055" x 0.055")

Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 470pF to 10000pF

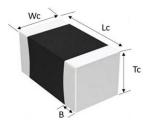
† Product Applications

Typical Functional Applications:


- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications:

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines


Part Numbering

÷ Capacitor Dimensions

Unit: inch (millimeter)

Length	Width	Thickness	Overlap
Lc	Wc	Tc	В
0.055 + 0.015 to -0.010 (1.40 +0.38 to -0.25)	$\begin{array}{c} 0.055 \pm .010 \\ (1.40 \pm 0.25) \end{array}$	0.057 (1.45 max)	$\begin{array}{c} 0.014 \pm 0.006 \\ (0.356 \pm 0.152) \end{array}$

0505X (0.055" x 0.055")

÷ 0505X Capacitance Values

Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	Rated WVDC
470	471			1500	152			4700	472		
560	561			1800	182			5000	502		
680	681	K,M	50V	2200	222	K,M	50V	5600	562	K,M	50V
820	821			2700	272			6800	682	,	
1000	102			3300	332			8200	822		
1200	122			3900	392			10000	103		

Special capacitances, tolerances and WVDC are available. Please contact PPI.

÷ Capacitance Tolerance Codes

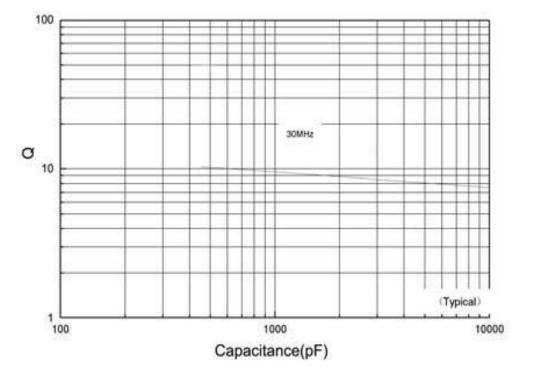
† Termination Types

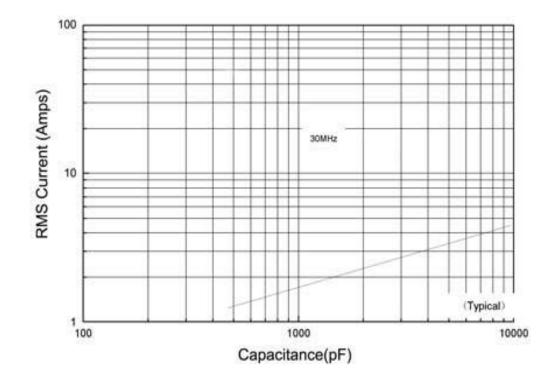
Code K M	Termination Code	Plated Material
Tol. ±10% ±20%	W	Sn/Ni
	L	90% Sn10%Pb
	P (Non-Magnetic)	Sn/Cu
	С	Ag/Pb
	G	Au/Ni
Electrical Specifications	Note: "Non-Magnetic" means no	magnetic materials.
Operating Temperature Range	-55°C to +125°C	
Insulation Resistance (IR)	Insulation Resistance @ - Insulation Resistance @ -	
Temperature Voltage Coefficient	+15/-25% ΔC (-55°C to -	-125°C)
Dielectric Withstanding Voltage (DWV)	2.5x WVDC, 5 seconds	

0.025 (2.5%) max

1kHz, 1.0 VRMS, 25°C

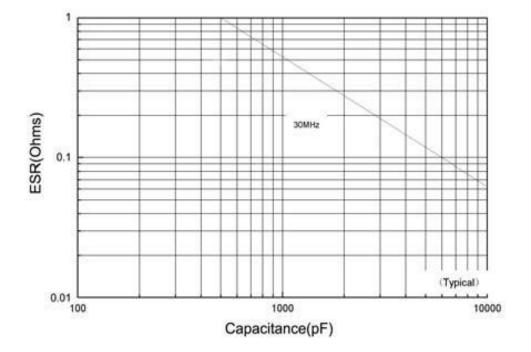
Test Parameters


Max Dissipation Factor

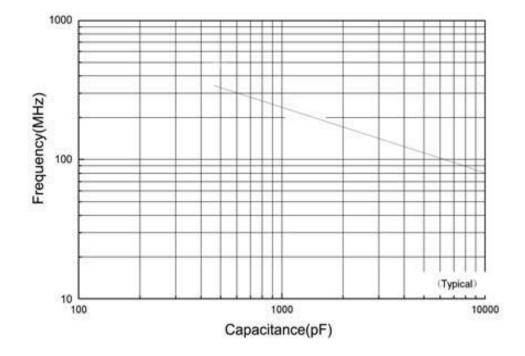


0505X (0.055" x 0.055")

‡ Q vs. Frequency

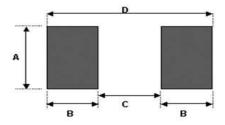


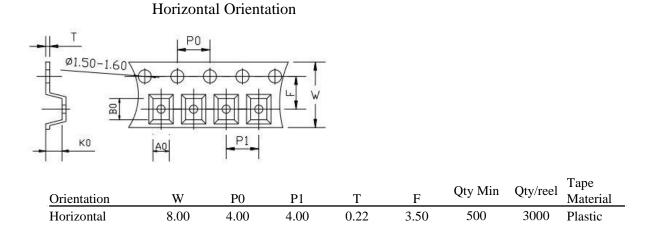
sales@passiveplus.com PPI0505XData111521RevA



0505X (0.055" x 0.055")

ESR vs Capacitance


sales@passiveplus.com PPI0505XData111521RevA


0505X (0.055" x 0.055")

+ Mounting Pad Recommendations

Orientation	A Min	B Min	C Min	D Min
Vertical	0.070"	0.050"	0.030"	0.130"
Horizontal	0.080"	0.050"	0.030"	0.130"

Tape & Reel Specifications (mm)

$A_0 B_0 K_0$

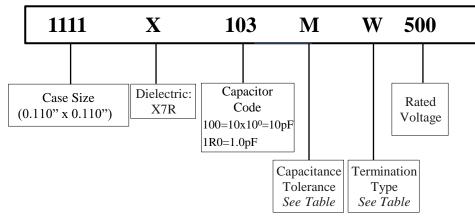
- Determined by component size. Typical clearance between the cavity and the component is: .05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.
- The component cannot rotate more than 20° within the determined cavity.

Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 4700pF to 100nF

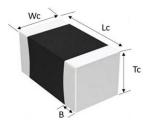
+ Product Applications

Typical Functional Applications:


- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching

Typical Circuit Applications:

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines


Part Numbering

÷ Capacitor Dimensions

Unit: inch (millimeter)

Length	Width	Thickness	Overlap
Lc	Wc	Tc	В
0.110+0.025~010 (2.79+0.64~ -0.25)	0.110 ± 0.015 (2.79 ± 0.38)	0.102 (2.59 max)	$\begin{array}{c} 0.020 \pm 0.010 \\ (0.508 \pm 0.250) \end{array}$

1111X (0.110" x 0.110")

+1 (631) 425-0938

sales@passiveplus.com PPI1111XData111521RevA

11111X (0.110" x 0.110")

≠ 1111X Capacitance Values

Cap. pF	Cap Code	Tol.	Rated WVDC	Cap. pF	Cap Code	Tol.	<u>Rated</u> WVDC	Cap. pF	Cap Code	Tol.	<u>Rated</u> WVDC
4700	472			15000	153			47000	473		
5600	562			18000	183			50000	503		
6800	682	K,M	50V	22000	223	K,M	50V	56000	563	K,M	50V
8200	822		501	27000	273		301	68000	683		501
10000	103			33000	333			82000	823		
12000	123			39000	393			100000	104		

Special capacitances, tolerances and WVDC are available. Please contact PPI.

÷ Capacitance Tolerance Codes

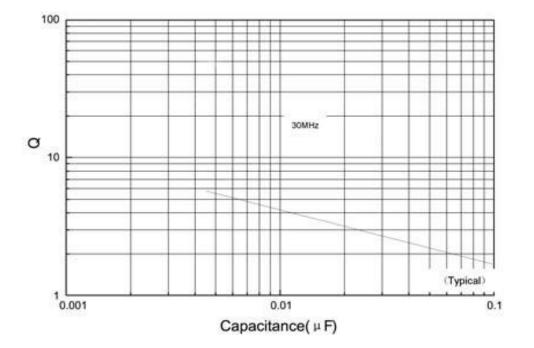
† Termination Types

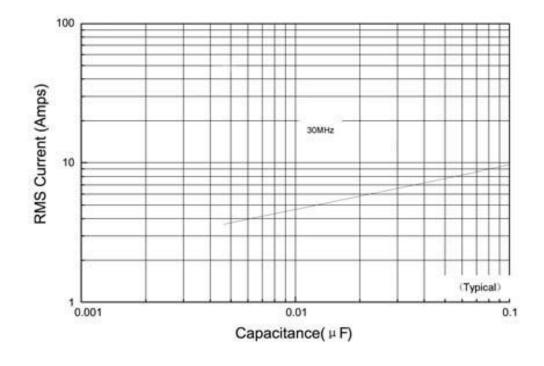
Code K M	Termination Code	Plated Material
Tol. ±10% ±20%	W	Sn/Ni
	L	90% Sn10%Pb
	P (Non-Magnetic)	Sn/ Cu
	С	Ag/Pb
	G	Au/Ni
Electrical Specifications	Note: "Non-Magnetic" means no	magnetic materials.
Operating Temperature Range	-55°C to +125°C	
Insulation Resistance (IR)	Insulation Resistance @ Insulation Resistance @	
Temperature Voltage Coefficient	+15/-25% ΔC (-55°C to -	+125°C)
Dielectric Withstanding Voltage (DWV)	2.5x WVDC, 5 seconds	

0.025 (2.5%) max

1kHz, 1.0 VRMS, 25°C

Test Parameters

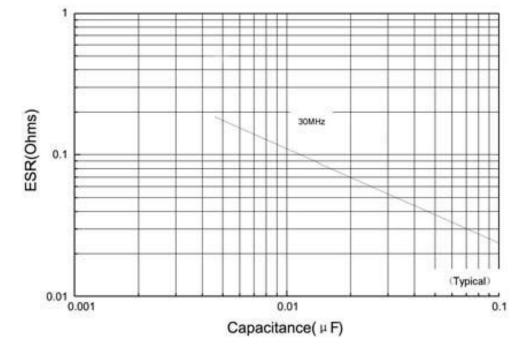

Max Dissipation Factor



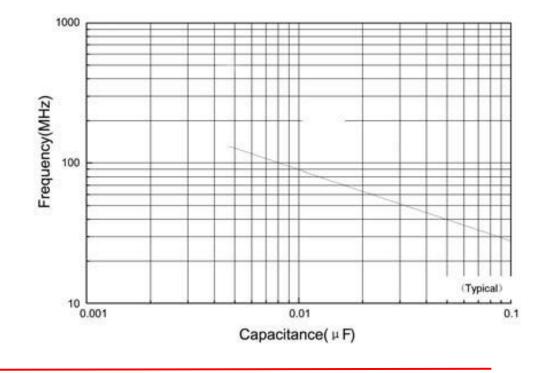
1111X (0.110" x 0.110")

† Q vs. Frequency

÷ Current Rating vs. Capacitance



sales@passiveplus.com PPI1111XData111521RevA



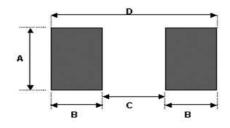
1111X (0.110" x 0.110")

ESR vs Capacitance

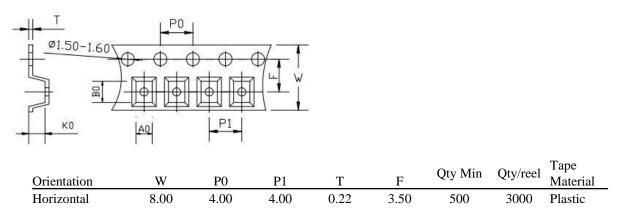
÷ Series Resonance vs. Capacitance

sales@passiveplus.com

PPI1111XData111521RevA



1111X (0.110" x 0.110")


Mounting Pad Recommendations

Orientation	A Min	B Min	C Min	D Min		
Vertical	0.120"	0.050"	0.075"	0.175"		
Horizontal	0.130"	0.050"	0.075"	0.175"		

+ Tape & Reel Specifications (mm)

 $A_0\,B_0\,K_0$

- Determined by component size. Typical clearance between the cavity and the component is: 0.5(0.02) is 1.50(0.02) is 1.50(0.02) is 1.50(0.02) is 1.50(0.02)
- .05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.
- The component cannot rotate more than 20° within the determined cavity.

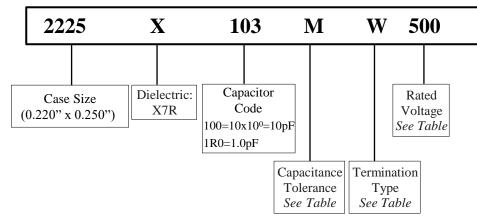
2225X (0.220" x 0.250"

Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 10nF to 1µF

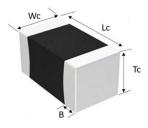
÷ Product Applications

Typical Functional Applications:


- Tuning Bypass Coupling
- D.C. Blocking Impedance Matching

Typical Circuit Applications

- UHF/Microwave RF Power Amplifiers
- Antenna Tuning Plasma Chambers
- Medical Equipment


茾 Part Numbering

÷ Capacitor Dimensions

Unit: inch (millimeter)

Length	Width	Thickness	Overlap		
Lc	Wc	Tc	В		
0.230+.020 ~ -0.012 (5.84+0.51~ -0.30)	0.250 ± 0.015 (6.35 ± 0.38)	0.165 (4.19 max)	$\begin{array}{c} 0.030 \pm 0.015 \\ (0.762 \pm 0.380) \end{array}$		

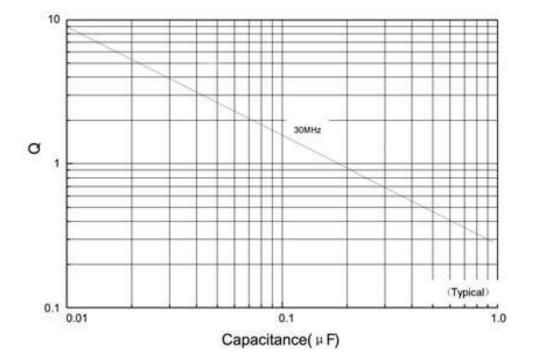
2225X (0.220" x 0.250")

2225X Capacitance Values

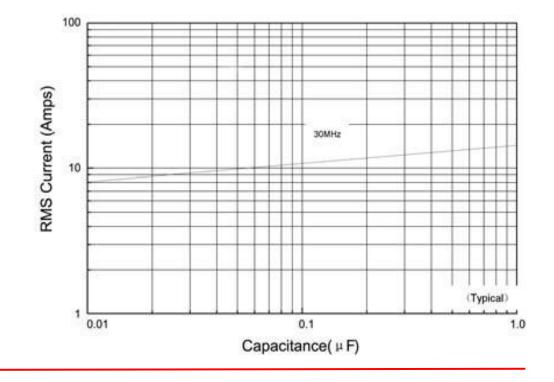
Cap. uF	Cap Code	Tol.	Rated WVDC	Cap. uF	Cap Code	Tol.	Rated WVDC	Cap. uF	Cap Code	Tol.	Rated WVDC	
0.010	103			0.082	823			0.560	564	K,M	150V	
0.012	123		K,M	300V	0.100	104			0.680	684	17,191	1500
0.015	153	1,111	5000	0.120	124	к,М	200V	0.820	824	K,M	100V	
0.022	223			0.150	154			1.000	105		1001	
0.033	333			0.220	224							
0.047	473	K,M	250V	0.330	334	K,M	K.M 150V					
0.068	683			0.470	474	17,101	100					

Special capacitances, tolerances and WVDC are available. Please contact PPI.

÷	Capacitance Tolerance Codes					pes		ge s		
	Code	K	Μ		Termination Code		Plated Material		Voltage	Code
	Tol.	±10%	±20%		W		Sn/Ni	ROHS	100V	101
					L		90% Sn10%Pb		150V	151
					P (Non-Magnetic)	\bigotimes	Sn/ Cu	ROHS	200V	201
					С		Ag/Pb		250V	251
					G		Au/Ni	RoHS	300V	301
;	Electric Operatin	-			-55	$^{\circ}$ C to +125°	С			
	Insulatio	n Resist	ance (IR)			stance @ +25°C > stance @ +125°C >			
	Tempera	ture Vol	tage Coe	efficie	± 13	5% Maximu	m			
	Dielectri	c Withst	tanding V	Voltag	ge (DWV) 2.52	WVDC, 5	seconds			
	Max Dis	sipation	Factor		0.02	25 (2.5%) m	ax			
	Test Para	ameters			1kH	Iz, 1.0 VRM	IS. 25°C			_


+1 (631) 425-0938

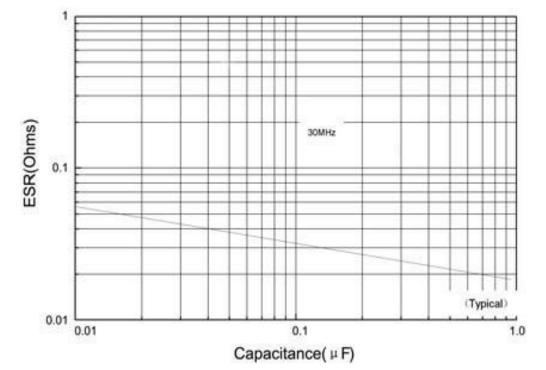
sales@passiveplus.com PPI2225XData111521RevA

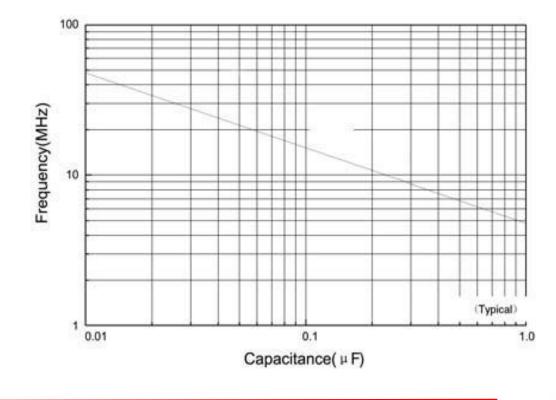


2225X (0.220" x 0.250")

‡ Q vs. Frequency

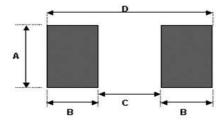
÷ Current Rating vs. Capacitance

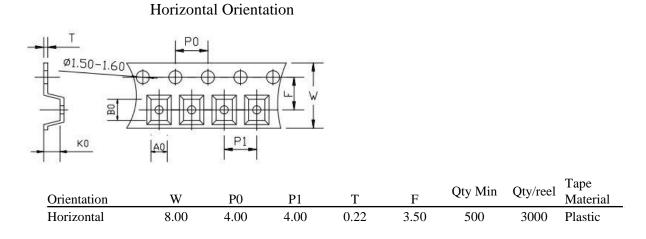




2225X (0.220" x 0.250")

ESR vs Capacitance





Mounting Pad Recommendations

Orientation	A	B	C	D	
	Min	Min	Min	Min	
Horizontal	0.280"	0.050"	0.200"	0.300"	

+ Tape & Reel Specifications (mm)

$A_0\,B_0\,K_0$

• Determined by component size. Typical clearance between the cavity and the component is:

.05 (.002) min to .50 (.020) max for 8mm tape and .50 (.002) min to .65 (.026) max for 12mm tape.

• The component cannot rotate more than 20° within the determined cavity.

Hand Soldering Chip Capacitors

Among the most common reasons multilayer ceramic chip capacitors (MLCCs) fail is improper hand soldering to printed circuit boards. Typically, one or more hairline cracks develop in the ceramic, defects that may even have an imperceptible effect on initial performance, but that manifest with time, circuit board flexure, or temperature excursions. Herein are a few tips, suggestions, and caveats to be aware of in performing a reliable hand soldering attachment.

<u>Solders</u>. Before selecting a solder, one should know the metallization on the chip. Starting at the component ceramic surface from which the electrodes protrude (typically < 1 mil), a contacting "termination" is applied that most often contains silver (Ag) or nickel (Ni). Over this is plated a barrier metal, typically nickel or copper (for non-magnetic applications), followed by a finishing metallization of tin (Sn) or lead (Pb)-tin. Other finishes may include palladium- silver (Pd/Ag), Ag, or gold (Au).

For finishes that include Ag, a silver bearing solder such as Sn62 is recommended to combat leaching of the component's silver into the solder joint. Silver bearing solders also improve resistance to thermal fatigue. For finishes that include Au, a solder such as In50 is suggested to avoid gold scavenging that may cause embrittlement (which occurs when gold comprises approximately 3% or greater by weight of the solder joint). For finishes that do not contain noble metals, SN63 is often used, or Sn95.5 or Sn96 where there is a no-lead, e.g. ROHS, requirement.

<u>Fluxes</u>. An appropriate flux helps to clean the surfaces to be soldered and facilitates solder spread; it may also remove oxidation. Check with the solder manufacturer for a recommended flux. Rosin based fluxes are most common but require post solder cleaning.

Fluxes are available both separately as pastes and as internal cores within wire solder. Each form has advantages and disadvantages. Use of an external flux permits precise placement in exact quantities, but consideration must be given to the activation temperature of the flux, which will be lower than that of the solder liquidus, and the time spent at this temperature. Too long at the latter will result in boiling off the flux and reducing its effectiveness. Flux core solder is easy and convenient to use but may require more solder than desirable to have sufficient flux for good coverage.

In practice, external flux seems to work best for parts of size 0603 or 0505 and below, while flux core solder appears satisfactory for larger component sizes.

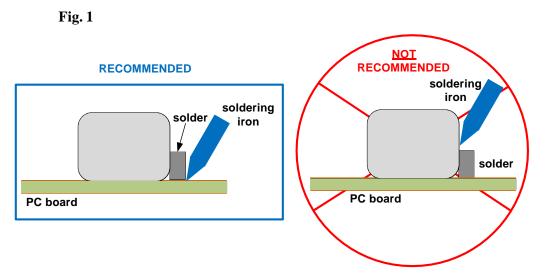
<u>Soldering iron</u>. A temperature-controlled iron of suitable wattage is strongly recommended. The iron temperature should typically be set 20-30°C above the solder liquidus temperature. Tip size is important; it should be about the same size as the part. Too small a tip (corresponding to an iron of insufficient wattage) will take too long to heat the printed circuit board land and part, while too large a tip (too high a wattage iron) may damage the board or component.

† Soldering Procedure

The initial consideration is which end of the capacitor to solder first. The choice can generally be decided by recognizing that it is desirable to minimize the heat flowing directly through the component. Thus, it is best to start from the end that has the poorest heat conduction (equals highest thermal resistance) to a heat sink. (Were one to start from the opposite end, a good heat path would have been created <u>through</u> the capacitor to the heat sink when one soldered the second joint.) If it is not apparent which land has the poorer connection to a heat sink, begin with the one having the smallest area.

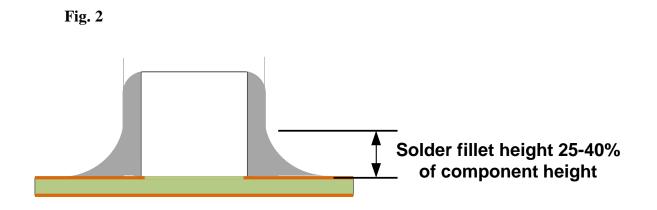
Follow these steps in soldering:

1. <u>Pre-heat the substrate</u>. Where possible, it is very desirable to gradually pre-heat the substrate, e.g. on a hotplate, to about 30°C below the solder liquidus temperature. Two steps are usually sufficient: Start the hotplate at a temperature about halfway to the desired pre-heat temperature, place the board on it and wait till the board temperature stabilizes, then increase the hotplate temperature to the desired final pre-heat value.


2. <u>Pre-" tin" the traces.</u> Select one of the PC board lands and clean it with isopropyl alcohol. If the solder you are using does not contain its own flux, place a small quantity of flux on the land, and a small amount of solder into the flux. (A razor may be used to cut a tiny custom preform from solid wire.) Place the iron on the printed circuit trace adjacent to the flux (but not touching) and heat the land until the solder melts into a flat, shallow pool. Remove the iron, then clean off any remaining flux with isopropyl alcohol. Repeat the procedure for the second land, then add fresh flux and a fresh solder preform (if not using flux-core solder) to each tinned land. (The preform should have sufficient mass to create a proper fillet – see step 5 – on the component.)

3. Pick up the component with either a hand tweezer or vacuum tweezer. (Stainless steel or ceramic-tipped tweezers are preferred.)

4. Place the component so that it straddles the circuit board lands, and make sure it lies flat on the board. As shown in **Fig. 1**, **Do not touch the component directly with the soldering iron**. Rather, touch the iron to the land adjacent to the capacitor until the solder begins to flow; then move the iron slowly toward the component.



5. When a fillet forms, remove the iron. As shown in **Fig. 2**, solder fillets should occupy about 25-40% of the component's height, have a concave profile, and be free of peaks and voids.

6. Repeat steps 1-5 for the second joint, then let the board cool gradually to room temperature. Use isopropyl alcohol to remove any residual flux from each joint.

www.passiveplus.com

+ Wave Soldering

When sudden heat is applied to the elements, the mechanical strength of the components should decrease because remarkable temperature change can cause deformity of components inside. Also, long soldering time or high soldering temperatures, result in leaching by the external electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.

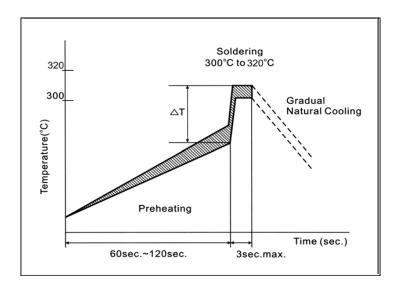
In order to avoid mechanical damage in the elements, preheating should be requested for both of the components and the PCB board. Preheating conditions are given in the table below. It is requested to keep the temperature gap between the soldering and the elements surface (.T) as small as possible.

When elements are submerged in solvent after mounting, be sure to maintain the temperature gas (.T) between the element and solvent within the range shown in the table below.

Do not apply the flow soldering to capacitors not listed in the table below.

Chip Capacitor	01005/0201/0402/0603/0505/0805
Preheating	∆T≤150°C

PPI does not recommend flow soldering for its 1111P/1111C, 2225P/2225C, 3838P/3838C.

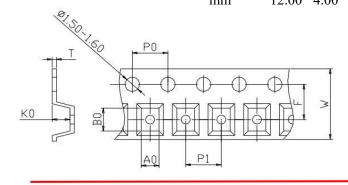

+1 (631) 425-0938

sales@passiveplus.com

≠ Soldering Iron

When sudden heat is given to the elements by soldering iron, the mechanical strength of the components should weaken because sharp temperature change can cause deformity of components inside. In order to avoid mechanical damage in the elements, preheating should be requested for both of the components and the PCB board. Preheating conditions are given in the below table. It is requested to keep the temperature gap between the soldering and the elements surface (ΔT) as small as possible. After the soldering, it should not be allowed to cool down suddenly.

Size	Soldering Iron	Temperature	Soldering Iron head Size	Solder
0505/0805		330°C		
1111	70W Thermostat Iron	350°C		63Sn/37Pb,
2225	70 w Thermostat from	370°C		95.5Sn/3.8Ag /0.7Cu
3838		370°C		



High-Q Low ESR Capacitors

High-Q Low ESR Capacitor Tape & Reel Specifications

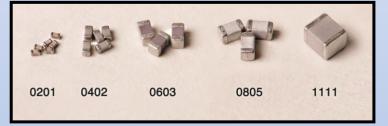
	Orientation	Measurement Unit	W	P0	P1	Т	F	Minimum Qty per Reel	Std Qty per Reel	Tape Materia
0201N	Н	in. mm	0.315 8.00	0.157 4.00	0.079 2.00	0.017 0.42	0.138 3.50	1000	15000	Paper
0402N	Н	in. mm	0.315 8.00	0.157 4.00	0.079 2.00	0.003 0.07	0.138 3.50	1000	10000	Paper
0603N	Н	in. mm	0.315 8.00	0.157 4.00	0.157 4.00	0.004 0.10	0.138 3.50	500	4000	Paper
00051	Н	in. mm	0.315 8.00	0.157 4.00	0.157 4.00		0.138 3.50	500	3000	Plastic
0805N •	V	in. mm	0.315 8.00	0.157 4.00	0.157 4.00	0.009 0.22	0.138 3.50	500	1000	Plastic
11111	Н	in. mm	0.315 8.00	0.157 4.00	0.157 4.00	0.010 0.25		500	2000	D14'
1111N -	V	in. mm	0.472 12.00	0.157 4.00	0.157 4.00	0.016 0.40	0.217 5.50	500	1500	- Plastic
0.505 GD	Н	in. mm	0.315 8.00	0.157 4.00	0.157 4.00	0.009 0.22		500	3000	
0505CP -	V	in. mm	0.472 12.00	0.157 4.00	0.157 4.00	0.012 0.30	0.217 5.50	500	2000	Plastic
	Н	in. mm	0.315 8.00	0.157 4.00	0.157 4.00	0.009 0.22	0.138 3.50	500	2000	
1111CP	P V	in. mm	0.315 8.00	0.157 4.00	0.157 4.00	0.009 0.22	0.138 3.50	500	1500	Plastic
-	V	in. mm	0.472 12.00	0.157 4.00	0.157 4.00	0.016 0.40	0.217 5.50	500	1500	
2225 C.D.	Н	in. mm			0.472 12.00	0.012 0.30		500	500	Plastic
2225CP -	V	in. mm	0.630 16.00	0.157 4.00	0.315 8.00	0.020 0.50	0.295 7.50	500	500	Plastic
3838CP	Н	in. mm	0.630 16.00		0.630 16.00			50	200	Plastic
0505X	Н	in. mm	0.315 8.00	0.157 4.00	0.157 4.00	0.012 0.30		500	4000	Plastic
1 1 1 1 37	Н	in.			0.157 4.00	0.012 0.30		500	2000	Plastic
1111X		mm	0.00							

$A_0B_0K_0$

• Determined by component size. Typical clearance between the cavity and the component is:

.50 (.002) min to .65 (.026) max for 12mm tape.

 \bullet The component cannot rotate more than 20° within the determined cavity.


sales@passiveplus.com PPIT&RSHIQCaps060922RevA

Marking shown for illustration purposes only. Actual marking may differ.

