Key Features

- 500 ~ 2100 MHz
- 1.0 dB noise figure
- 35.0 dBm output IP₃
- 18.0 dB Gain
- +/-0.5 dB Gain Flatness
- 24 dBm P_{1dB}
- 1.5:1 VSWR
- Surface Mount Package
- >68 Years MTBF
- RoHS Compliant
- MLS-1 Moisture Sensitivity Level

Product Description

WHM0716AE integrates WanTcom proprietary low noise amplifier technologies, high frequency micro electronic assembly techniques, and high reliability designs to realize optimum low noise figure, wideband, and high performances together. The amplifier has optimal input and output matching in the specified frequency range at 50-Ohm impedance system. The amplifier has standard 0.40" x 0.20" x 0.085" surface mount package.

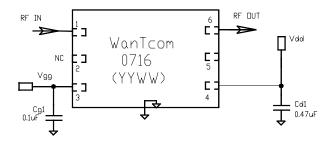
The amplifier is designed to meet the rugged standard of MIL-STD-883.

Applications

- Mobile Infrastructures
- GPS
- Avionics
- 3G
- Security System
- Measurement
- Fixed Wireless

Specifications

Summary of the key electrical specifications at room temperature

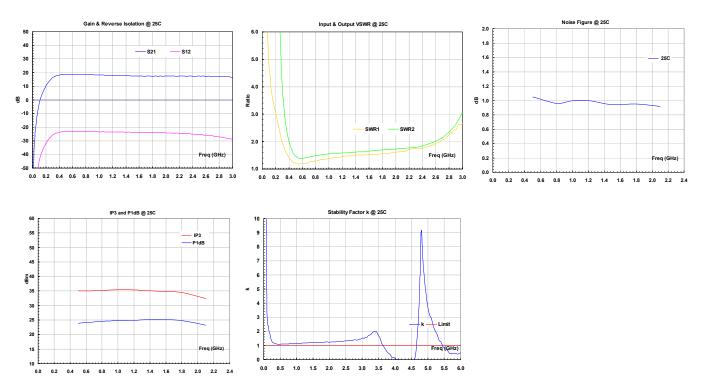

Index	Testing Item	Symbol	Test Constraints		Nom	Max	Unit
1	Gain	S ₂₁	750 – 1600 MHz		17.0		dB
2	Gain Variation	ΔG	750 – 1600 MHz		+/-0.5		dB
3	Input VSWR	SWR ₁	750 – 1600 MHz		1.5:1	1.8:1	Ratio
4	Output VSWR	SWR ₂	750 – 1600 MHz		1.5:1	1.8:1	dB
5	Reverse Isolation	S ₁₂	750 – 1600 MHz		25		dB
6	Noise Figure	NF	750 – 1600 MHz		1.0	1.2	dB
7	Output Power 1dB Compression Point	P _{1dB}	750 – 1600 MHz	22	24		dBm
8	Output-Third-Order Interception point	IP ₃	Two-Tone, P _{out} = 10 dBm each, 1 MHz separation	33	35		dBm
9	Current Consumption	I _{dd}	V _{dd} = +5.0 V		120		mA
10	Power Supply Voltage	V _{dd}		+4.8	+5	5.2	V
11	Thermal Resistance	R _{th,c}	Junction to case			18	°C/W
12	Operating Temperature	To		-40		+85	°C
13	Maximum Average RF Input Power	P _{IN. MAX}	DC - 6.0 GHz			20	dBm

Absolute Maximum Ratings

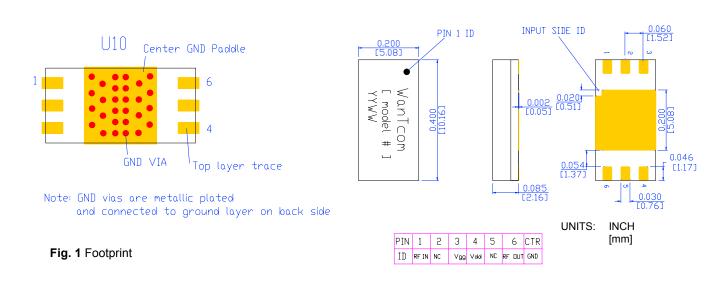
Parameters	Units	Ratings
DC Power Supply Voltage	V	6
Drain Current	mA	200
Total Power Dissipation	W	1.0
RF Input Power	dBm	20
Channel Temperature	°C	160
Storage Temperature	°C	-65 ~ 150
Operating Temperature	°C	-40 ~ +85

Operation of this device beyond any one of these parameters may cause permanent damage.

Application Diagram



Important: Sequencing bias circuit required to Vgg and Vddl Vdd=+5V, Idd=120 mA. Adjust Vgg and Vdd slightly for best IP3. The resistance between Vgg and Pin 3 should be less than 1 KOhm


Ordering Information

ESD resistant tube with the capacity of 10 pieces is used for the packing. Contact factory for tape and reel packing option for higher volume order.

Typical Data

Outline and Foot Print, WHM-3

REV B May. 2009

Application Notes:

A. Motherboard Layout

The recommended motherboard layout is shown in **Figure 1**. Sufficient numbers of ground vias on the motherboard are essential for the RF grounding. The width of the 50-Ohm microstrip lines at the input and output RF ports may be different for different property of the substrate. The ground plane is needed to connect the center ground pad of the device through the vias. The ground plane is also essential for the 50-Ohm microstrip line launches at the input and output ports.

B. DC Bias Sequence

Always bias the V_{gg} of the negative voltage first at Pin 3 before applying V_{dd} at Pin 4. Always disconnect V_{dd} first before disconnecting V_{gg} .

C. Assembly

The regular low temperature and none clean solder paste such as SN63 is recommended. The high temperature solder has been used for the WHM series amplifier internal assembly. The melting temperature point of the high temperature solder is around 217 \sim 220 $^{\circ}$ C. Thus, melting temperature of the solder paste should be below 215 $^{\circ}$ C for assembling WHM series amplifier on the test board to reduce the possible damaging possibility. The temperature melting point of the SN63 solder paste is around 183 $^{\circ}$ C and is suitable for the assembly purpose.

The SN63 solder paste can be dispensed by a needle manually or driven by a compressed air. **Figure 2** shows the example of the dispensed solder paste pattern. Each solder paste dot is in about diameter of $0.005^{\circ} \sim 0.010^{\circ}$ ($0.125 \sim 0.250$ mm).

For higher volume assembly, a production solder paste stencil with 0.004" (0.10 mm) is recommended to print the solder paste on the circuit board.

For more detail assembly process, refer to AN-109 at www.wantcominc.com website.

D. Heat Sink

Sufficient heat sink is required. The assembled part shall be mounted on a heat sink securely. Thermal compound is needed between the heat sink surface and the backside of the motherboard of the assembly.
