## **Key Features**



- Frequency of 162 MHz
- 1.5 Ohm Input Impedance
- 0.30 dB Noise Figure
- 30.0 dBm Max P<sub>IN</sub>
- 21.0 dBm Output IP<sub>3</sub>
- 28.0 dB Gain
- 10.0 dBm P<sub>1dB</sub>
- 1.22:1 Output VSWR
- Unconditional Stable, k>1
- Single Power Supply
- None Magnetic

#### **Product Description**



WMA162A is integrated with WanTcom proprietary low noise amplifier technologies, high frequency micro electronic assembly techniques, and high reliability designs to realize optimum low noise figure, wideband, and high performances together. With single +10.0V DC operation, the amplifier has 1.5 Ohm input impedance and unconditional stable condition. The amplifier has 0.60" x 0.40" x 0.10" surface mount package.

#### Other frequencies and impedance available!

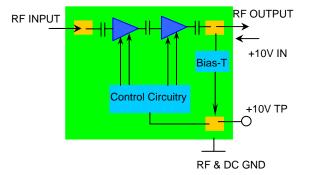
# Applications

- Magnetic Resonance Imaging
- RF Measurement
- Medical
- Current Sensor



## **Specifications**

Summary of the key electrical specifications at room temperature, tested in the WanTcom fixture, 80051.


| Index | Testing Item                          | Symbol               | Test Constraints                                             | Min  | Nom     | Max     | Unit  |
|-------|---------------------------------------|----------------------|--------------------------------------------------------------|------|---------|---------|-------|
| 1     | Gain                                  | S <sub>21</sub>      | 162 MHz                                                      | 27.5 | 28.0    | 28.5    | dB    |
| 2     | Gain Variation                        | ΔG                   | 162 +/- 1 MHz                                                |      | +/-0.05 | +/- 0.1 | dB    |
| 3     | Input Impedance                       | RE [Zin]             | 162 MHz                                                      | 1.2  | 1.5     | 2.0     | Ohm   |
|       |                                       | IM [Zin]             | 162 MHz                                                      | -2.0 | 0       | 2.0     | Ohm   |
| 4     | Output VSWR, 50 Ohm Impedance         | SWR <sub>2</sub>     | 162 MHz                                                      |      |         | 1.22:1  | Ratio |
| 5     | Reverse Isolation                     | S <sub>12</sub>      | 162 MHz                                                      | 60   | 70      |         | dB    |
| 6     | Noise Figure                          | NF                   | 162 MHz                                                      |      | 0.30    | 0.50    | dB    |
| 7     | Output Power 1dB Compression Point    | P <sub>1dB</sub>     | 162 MHz                                                      | 8    | 10      |         | dBm   |
| 8     | Output-Third-Order Interception point | IP <sub>3</sub>      | Two-Tone, P <sub>out</sub> = -3.0 dBm each, 1 MHz separation | 18   | 21      |         | dBm   |
| 9     | Current Consumption                   | I <sub>dd</sub>      | $V_{dd}$ = +10.0 V                                           |      | 16      |         | mA    |
| 10    | Power Supply Operating Voltage        | $V_{dd}$             |                                                              | +7   | +10     | +12     | V     |
| 11    | Thermal Resistance                    | R <sub>th,c</sub>    | Junction to case                                             |      |         | 220     | °C/W  |
| 12    | Operating Temperature                 | To                   |                                                              | +10  |         | +60     | °C    |
| 13    | Maximum RF Input Power                | P <sub>IN, MAX</sub> | DC - 6.0 GHz, 10% Duty Cycle,                                |      |         | 30      | dBm   |
| 14    | Saturate Recover Time                 | t <sub>sr</sub>      | 10% to 90% from 30 dBm Pin                                   |      | 8       | 10      | uS    |
| 15    | ESD Protection, None Contact          | V <sub>ESDN</sub>    | Output Port                                                  |      |         | 16      | kV    |
| 16    | ESD Protection, Direct Contact        | V <sub>ESD</sub>     | Output Port                                                  |      |         | 6       | kV    |

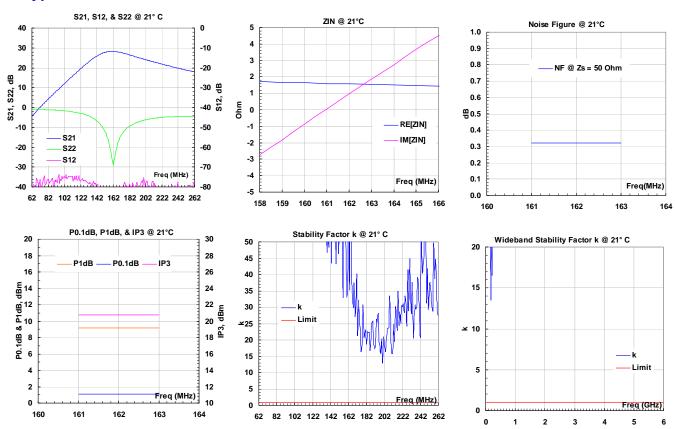
## **Absolute Maximum Ratings**

| Parameters                      | Units | Ratings   |
|---------------------------------|-------|-----------|
| DC Power Supply Voltage         | V     | 15.0      |
| Drain Current                   | mA    | 30        |
| Total Power Dissipation         | mW    | 350       |
| RF Input Power, 10% Duty Cycle  | dBm   | 30        |
| Channel Temperature             | °C    | 150       |
| Storage Temperature             | °C    | -65 ~ 150 |
| Operating Temperature           | °C    | 0 ~ +70   |
| Thermal Resistance <sup>1</sup> | °C/W  | 215       |

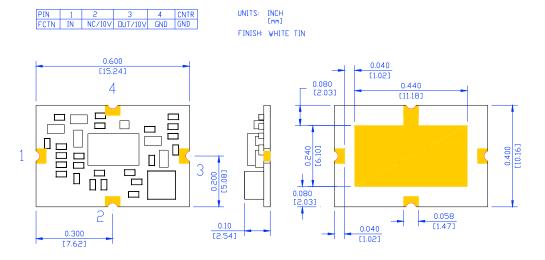
Operation of this device beyond any one of these parameters may cause permanent damage.

# **Functional Block Diagram**

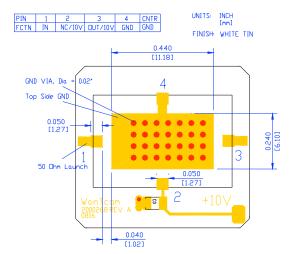



#### **Ordering Information**

Model Number WMA162A


<sup>&</sup>lt;sup>1</sup> The last stage transistor dominates the heat dissipation. The drain bias voltage is +6V and the drain current is 15.0 mA. The total power dissipation of the last stage transistor is thus 90 mW. The junction temperature arise 0.09 x 215 = 19 (°C).

ESD Tray is used for the packing. Contact factory for tape and reel packing option for higher volume order.


# **Typical Data**



## Outline,



## **Foot Print/Mounting Layout:**



## **Application Notes:**

#### A. Motherboard Layout

The recommended motherboard layout is shown in diagram of **Foot Print/Mounting Layout**. Sufficient numbers of ground vias on center ground pad are essential for the RF grounding. The width of the 50-Ohm microstrip lines at the input and output RF ports may be different for different property of the substrate. The ground plane on the backside of the substrate is needed to connect the center ground pad through the vias. The ground plane is also essential for the 50-Ohm microstrip line launches at the input and output ports.

The +10V DC voltage is applied at Pin 2 or at the output Pin 3. There is a built-in bias-T at the output port to separate the RF output signal and input +10V DC power supply.

No DC block capacitor is required at input RF ports.

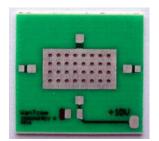



Fig. 1 Example of the motherboard

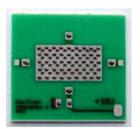



Fig. 2 Dispensed solder paste



Fig. 3 Assembled part

#### B. Assembly

The regular low temperature and none clean solder paste such as SN63 is recommended. The high temperature solder has been used internally for the WHM series amplifier assembly. The melting temperature point of the high temperature solder is around 217  $\sim$  220  $^{\circ}$ C. Thus, melting temperature of the solder paste should be below 217  $^{\circ}$ C for assembling WHM series amplifier on the test board to reduce the possible damage. The temperature melting point of the SN63 solder paste is around 183  $^{\circ}$ C and is suitable for the assembly purpose.

The SN63 solder paste can be dispensed by a needle manually or driven by a compressed air. **Figure 2** shows the example of the dispensed solder paste pattern. Each solder paste dot is in the diameter of  $0.005^{\circ} \sim 0.010^{\circ}$  ( $0.125 \sim 0.250$  mm).

For volume assembly, a stencil with 0.006" (0.15 mm) is recommended to print the solder paste on the circuit board.

For more detail assembly process, refer to AN-109 at <a href="www.wantcominc.com">www.wantcominc.com</a> website.