SiCPAKTM Product Family

World's Only Trench-Assisted Planar SiC Technology

SiCPAK was developed to withstand harsh environments and extreme operating conditions

for customers who require stable and long-lasting performance in demanding applications

Setting a New Standard for Press-fit Modules

Unparalleled Reliability and Efficient High-Temperature Performance

✓ <u>Performance</u>: GeneSiC Trench Assisted Planar SiC MOSFET Technology

- Up to 20% lower R_{DS,ON} at elevated temperature
- Up to 15% lower switching losses
- Unparalleled reliability under high-voltage/high-temperature/humidity/high-dVdt

✓ <u>Endurance:</u> Epoxy-resin Potting Technology

- >10x improved temperature cycling reliability and most-stable thermal resistance
- Protected against moisture ingression in humid environments
- ✓ Designed to Address Mission-Profiles of <u>Demanding Applications</u>:
 - EV roadside fast chargers, industrial welding, induction heating, industrial motor drives, solar inverters, and energy storage systems (ESS).

SiCPAK™ : Built for Endurance and Performance

	SiCPAK (33.8mmX	F Series 62.8mm)		SiCPAK G Series (56.7mm X 62.8mm)	
R _{DS(ON)} @ V _G = 18V	Half-Bridge (2-Pack / Phase-Leg)	Full-Bridge (4-Pack)	Half-Bridge (2-Pack / Phase-Leg)	Full-Bridge (4-Pack)	3L-T-NPC
1200V 4.6 mΩ			G3F05MT12GB2 G3F05MT12GB2-T		
1200V 9.3 mΩ	G3F09MT12FB2 G3F09MT12FB2-T			G3F09MT12GB4 G3F09MT12GB4-T	Qualification Samples
1200V 17.0 mΩ	G3F17MT12FB2 G3F17MT12FB2-T				
1200V 18.5mΩ		G3F18MT12FB4 G3F18MT12FB4-T			

- -T Pre-Applied Thermal Interface Material (Honeywell PTM6000)
- All Pin-to-Pin Compatible with Industry Standard Press-fit Modules
- Built-in NTC thermistors

Richardson

Electronics

Better Reliability Than Standard Press-Fit Modules 🔊 Navitas

Reliability Improvements	SiCPAK [™] Qualification	Competitor Qualification
Temperature Cycling (-55°C to 150°C)	1000 cycles	<100 cycles
Thermal Shock Test (-40°C to 125°C)	1000 cycles	<100 cycles
Temperature Humidity Bias (тнв / нv-нзткв)	1000 hrs 80% V _{DS} THB at module-level 1000 hrs 100% V _{DS} HV-H3TRB die-level	1000 hrs 80% V _{DS} die-level only

Navitas' Epoxy-Potted SiCPAK Modules vs. Competitors' Silicone-Gel Filled Modules after <u>1000 cycles of Thermal Shock</u>

- Up to 15% thermal resistance increase for epoxy-resin vs. 33%-80% for silicone-gel
- All epoxy-resin potted modules passed isolation tests; all silicone-gel modules failed

Thermal Shock Testing Highlights Epoxy Benefits

Thermal Shock Testing (-40°C to 125°C)

Silicone

Ероху

Significant difference observed in thermal-shock stressed conchoidal fractures between **Epoxy** and **Silicone**

Copyright Navitas Semiconductor

ellpower.com

rellpower@rell.com

Why do Silicon-Gel Press-Fit Modules Fail?

• Problem: Temperature Cycling

• DBC extends and bends with temperature variation, causing conchoidal fractures

• Problem: Humidity

• Silicone gel absorbs moisture and contaminants from the air, leading to short circuit failures

 High temperatures - Moisture and sulphur-containing substances (e.g. hydrogen sulphides) leads to ingression

How Does Epoxy-Resin Solve These Challenges?

- Epoxy reduces stress between DBC and bond-wires
- Reduces expansion stresses due to higher thermal conductivity
 - Epoxy provides ~10x higher thermal conductivity over gel, quickly spreading heat

- Limits extension and bending of overall structure
 - Epoxy limits extension and bending of DBC
- Reduces moisture ingression
 - Gel absorbs water moisture & contaminants

Qualification Tests : Beyond Industry Norms

Test	Reference	Test Conditions	Duration	Devices	Result	
HTRB	JESD22-A108	High-Temperature Reverse Bias: Tj = 175°C, VDS = 1200V	1000hrs	≥ 77 dies	PASS	
HTRB	JESD22-A108	High-Temperature Reverse Bias: Tj = 175°C, VDS = 1200V	1000hrs	≥ 6 modules	PASS	
HTGB	JESD22-A108	High Temperature Gate Bias: Tj = 175°C, VGS = +22V	1000hrs	≥ 77 dies	PASS	
HTGBR	JESD22-A108	High Temperature Gate Bias: Tj = 175°C, VGS = -10V	1000hrs	≥ 77 dies	PASS	
HV-H3TRB	JESD22 A-101	High Humidity High-Temperature Bias: 85°C, 85%RH, VDS = 960V	1000hrs	≥ 77 dies	PASS	
HV-H3TRB (THB)	JESD22 A-101	High Humidity High-Temperature Bias: 85°C, 85%RH, VDS = 960V	1000hrs	≥ 6 modules	PASS	<u>Co</u>
тс	JESD22-A104	Temperature Cycle: -55°C / 150°C	1000 сус	≥ 6 modules	PASS	<u>Co</u>
HTSL	JESD22-A103	High-Temperature Storage Life: Ta = 175°C	1000hrs	≥ 6 modules	PASS	
РС	IEC 60749-34	Power Cycling (sec) : ΔTj = 80°C, Tj max = 150 °C	25,000 cycles	≥ 6 modules	PASS	
VIB	IEC 60068-2-6	Vibration (25-500Hz/15min, 10G, each 2 hours X, Y, Z)	N/A	≥ 6 modules	PASS	
UIS	AEC Q101-004	Unclamped Inductive Switching	N/A	≥ 3 modules	PASS	

Trench-Assisted Planar = Superior Performance

5% - 20% Lower R_{DS,ON} at 100°C – 175°C

Industry-Leading Performance Enabled by Proprietary Trench-Assisted Planar SiC MOSFET Technology

Copyright Navitas Semiconductor

Richardson Electronics

POWER & MICROWAVE TECHNOLOGIES

Thank you!

info@navitassemi.com www.navitassemi.com

rellpower@rell.com www.rellpower.com

