

Richardson Electronics (RELL) Drone and UAV Solutions

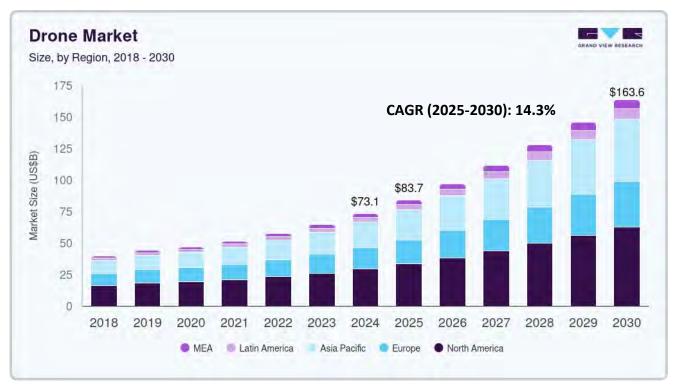
Overview

- Market Landscape
- Drone Classification
- Key Design Considerations
- Richardson Electronics Drone Design Solutions
- Richardson Electronics Value Proposition

Market Overview

Projected Growth:

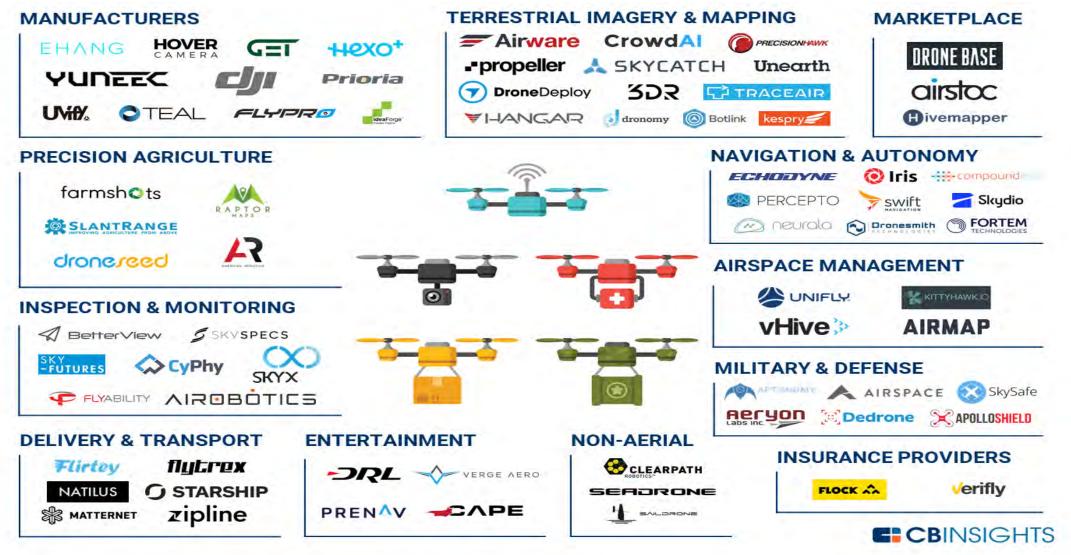
- Global drone market size is expected to surpass \$100 billion by 2030, with ~14% CAGR.
- **North America** remains a dominant market, supported by favorable government regulations.
- **Europe** is also a key growth region, with countries like the UK and Germany leading in logistics and technological innovation, respectively.
- **Asia Pacific** is the fastest-growing market, driven by advancements in technology for Japan meanwhile while China's market grows due to strong manufacturing, significant investment, and favorable government policies.


Market Drivers:

- **Automation:** Autonomous flight and Al-powered tasks are reducing operational costs and increasing efficiency.
- **Data Acquisition:** Drones provide high-resolution, real-time data for industries like agriculture, construction, and energy inspection.
- **Military & Security:** Increasing demand for unmanned aerial vehicles (UAVs) for surveillance, reconnaissance, and combat operations.
- Hardware Advancement: Continuous improvements in battery life, imaging sensors, connectivity (including 5G and IoT) and LiDAR integration are expanding drone capabilities.

Trends:

- **Shifting Segments:** The commercial drone market is growing faster than the military segment, but the military sector remains dominant in terms of R&D and high-value components.
- **Drone-as-a-Service (DaaS):** Making drone technology more accessible to a broader range of businesses.



Source: Grand View Research

Market Ecosystem

Drone Classification

Consumer

Commercial / Industrial

Primary Use	Hobby, photography, light recreational use	Professional/commercial work	Defense, surveillance, tactical operations
Flight Time	20-40 min	30 min - 2 hrs (some fixed-wing > 5 hrs)	Several hours to > 24 hrs
Range	2-15 km	10-100 km	150−1,500+ km
Speed	40-80 km/h	60-160 km/h	100-300+ km/h
Payload Capacity	200 g – 1 kg	2-30 kg	50−1,000+ kg
Sensors	GPS, IMU, obstacle sensors	GPS, RTK GNSS, LiDAR, thermal, multispectral	Multi-band GNSS, SAR radar, SIGINT sensors
Navigation	GPS + visual positioning	GPS/RTK, AI object detection, pre- programmed routes	GPS + inertial navigation + anti-jamming
Battery Voltage	11.1-14.8 V (3S-4S LiPo)	14.8-44.4 V (4S-12S LiPo/Li-ion)	44.4 V and above for electric; higher voltages for hybrid systems
Battery Power Output	~100-500 W	~500 W – 5 kW	5 kW - 100+ kW depending on mission profile
Power Source	Battery only	Battery, hybrid battery-fuel cell, small combustion engines	Battery, hybrid, turbine/combustion engine
Regulation	Light regulation (hobbyist rules)	Licensed operation, commercial flight approvals	Strict national defense control

How Are Drones Being Deployed?

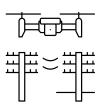
Precision agriculture

Soil monitoring Spraying and seeding Crop health monitoring

Military and Security

Real-time surveillance National border monitoring Combat operation

Disaster Management


Rapid assessment Search and rescue Critical supplies delivery

Urban Development

Mapping and planning Infrastructure inspection Environmental monitoring Traffic management

Energy Infrastructure Inspection and Maintenance

Power lines Wind turbines Solar farms Oil and gas

Commercial

Aerial videography Logistics & goods delivery

Key Design Considerations

Power & Energy Efficiency *

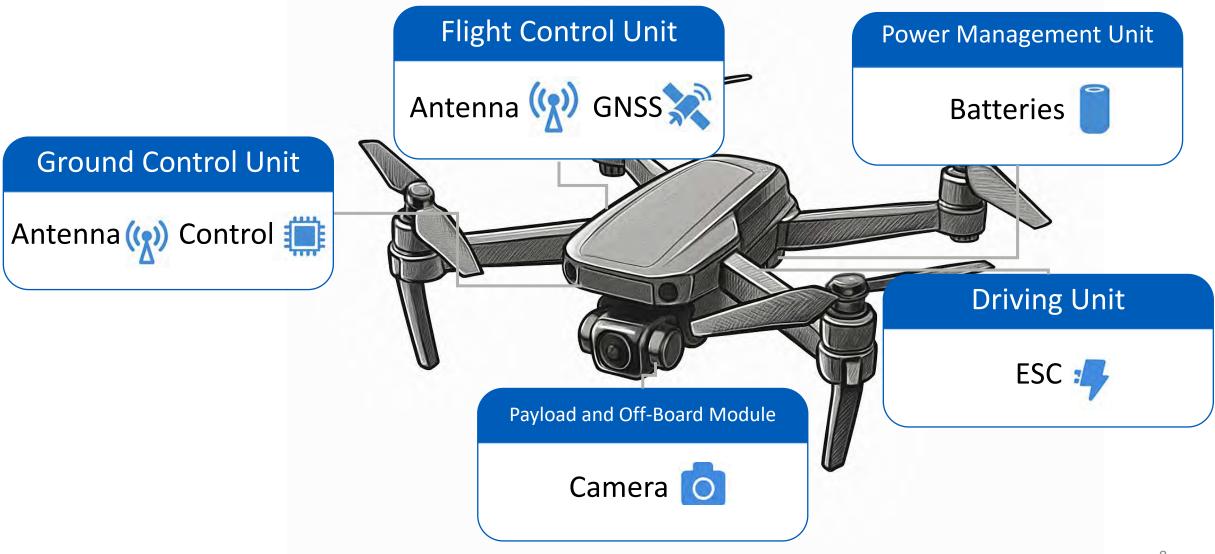
- **Battery Limitations** Li-ion/LiPo batteries have limited energy density; larger batteries add weight and reduce gains.
- **Propulsion System Efficiency** Optimizing motor and propeller design for maximum thrust with minimal energy use.
- Aerodynamics Reducing drag through better shape and weight distribution to extend flight time.

Flight Autonomy & Safety *

- Obstacle Avoidance Sensors (LiDAR, radar, cameras) plus real-time processing
- Al-based software For both drone & Ground Control Station (GCS)
- Navigation Without GPS Using SLAM and vision-based navigation indoors or in GPSdenied areas.
- Failsafe Systems Automatic return-tohome, emergency landing, and redundancy for critical components.

Materials & Structural Integrity

- Weight vs. Durability Balancing lightness for longer flight with strength for crash resistance.
- Material Trade-offs
 - Carbon fiber: Strong, light, expensive.
 - Aluminum: Strong, affordable, heavier.
 - Plastics: Light, cheap, less durable.


Payload & Thermal Management *

- Payload Capacity Supporting payload weight without losing stability.
- Heat Dissipation Cooling for motors, batteries, and processors to prevent overheating.
- Modularity Swappable payloads for different missions (cameras, LiDAR, delivery pods).

⁷

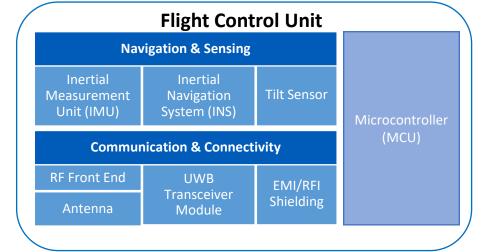
Drone Block Diagram with Solutions from Richardson Electronics

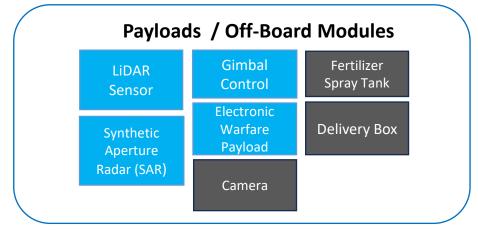
Richardson Electronics-Drone Design Solutions

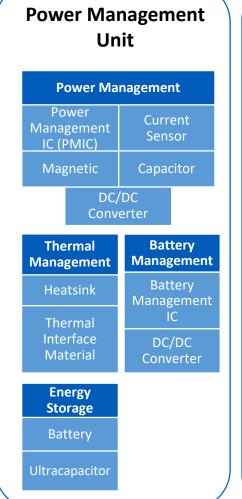
Ground Control Unit

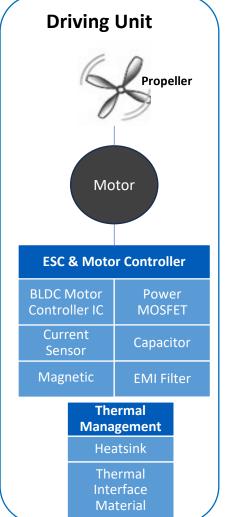
Human Machine Interface MEMS Force

Communication & Connectivity


Sensor


RF Front End


Antenna


UWB Transceiver Module

EMI/RFI Shielding

Payloads in which RELL solutions is applicable. Refer Appendix 1 for details.

Human Machine Interface

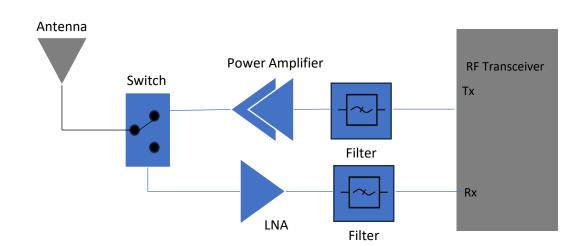
Human Machine Interface(HMI)

Richardson Electronics POWER & MICROWAVE TECHNOLOGIES

QOCVO

MEMS Force Sensor

- Enable innovative human machine interface (HMI) and gapless industrial design.
- Add the element of "intent" to any touch surface.
- Highest sensitivity, linearity > 99%, lowest power, smallest form factor (1.3x1.3x0.22mm)
- Key advantages:
 - Environmental immunity: immune to moisture/water/ice/dust/RF/EMI
 - Work with any input: gloves/prosthetics/stylus
 - Material agnostic: works on glass, metal, plastic, etc.
- Target Applications on drone controller HMI: Buttons, sliders, smart surfaces, multi-level force sensing, display force support, XYZ measurement, wake up function.



RF Front End

Ground Control Unit

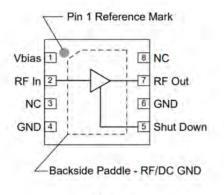
Flight Control Unit

- Enables reliable communication & control between drone and ground station
- Typical frequency bands for drone: ISM bands, 2.4GHz, 5.8GHz, licensed bands.
- RF front end key components: Power Amplifier(PA), Low-Noise Amplifier(LNA), Filter, Switch
- Featured Qorvo components:
 - LNA: QPL9504, QPL9058
 - Power Amplifier Driver: QPA9126, QPA9127
 - GaN PA: QPA0106
- Advanced drone features can be achieved with RF front ends, i.e.
 - Beamforming & phased arrays equipped drone.
 - Software defined radio(SDR) UAV.

RF Front End – Low Noise Amplifier

Ground Control Unit

Flight Control Unit


Wideband, Ultra Low Noise, High Gain LNAs

Product Features

- Best-in-class NF performance
- Wideband, 50Ω matched
- > 20dB gain across 1.5-6.0GHz
- 1.8V TTL control for shutdown
- Maintains OFF state under high drive
- <1us switching speeds

QPL9058 Gain vs. Frequency

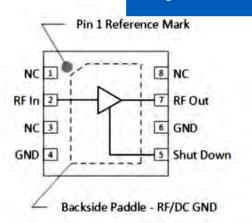
Top View

P/N	Freq	Gain 0.9G	Gain 1.9G	OIP3 0.9G	OIP3 1.9G	NF 0.9G	NF 1.9G	P1dB 0.9G	P1dB 1.9G	Vdd	ldd	Pkg
	(GHz)	(dB)	(dB)	(dBm)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(V)	(mA)	(mm)
QPL9504	0.6-6.0		21.5		34.5		0.70		18	5	50	2 x 2
QPL9058	1.0-5.0	22	18	35	35	0.4	0.6	18	21	5	57	2 x 2

RF Front End – Power Amplifier Driver

High Linearity Gain Block Amplifiers

Ground Control Unit


Flight Control Unit

Product Features

- 1-6GHz
- 50 Ω matched RF input and output
- 20dB gain
- +35dBm output IP3
- +20dBm P1dB
- +5V single supply with DC shutdown

Benefits

- High gain and high linearity
- Internally matched to 50 Ohms
- Power down control pin
- 1.8V logic level compatible

P/N	Freq	Gain	OP1dB	OIP3	Voltage	Current	Pkg
	(GHz)	(dB)	(dBm)	(dBm)	(V)	(mA)	(mm)
QPA9126	1-6	16	+20	+35	5	70	2 x 2
QPA9127	1-6	20	+20	+35	5	70	2 x 2
QPA9442	0.6-5	17	+30	+46	.5	235	4 x 4
QPA9119	0.4-4.2	17	+27	+44	5	137	3 x 3

RF Front End – GaN Power Amplifier

QPA0106: 1GHz - 6GHZ GaN PA

Ground Control Unit

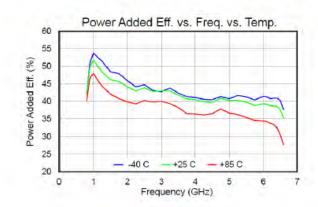
Flight Control Unit

Product Features

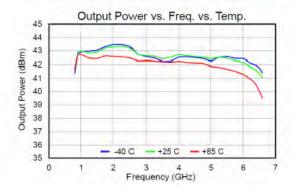
Frequency: 1 - 6 GHz

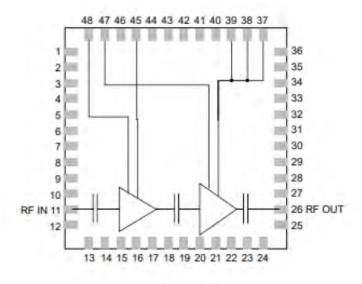
P_{SAT}: 18W

PAE: 38 - 50 %


LSG: 24 dB

Bias: 22V


Benefits


- Flat Wideband Saturated Power
- **Excellent Efficiency**
- **High Large Signal Gain**
- **QFN SMT Package**

QPA0106 Power Added Eff. Vs Freq. vs Temp.

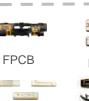
QPA0106 Gain vs. Frequency

Top View

Antenna

Ground Control Unit

Flight Control Unit


ISM

GNSS

- Telemetry & control links
- To cover up 433, 868, 915 MHz
- SMD and cable assembly with compact size
- Positioning & navigation of drones
- Low AR(axial ratio)
- To cover up GNSS L1, GNSS L2, GNSS L5 and RTK Inmarsat

• To receive satellite signal for positioning

Good isolation in stacked patch

Enclos

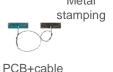
/ WiFi

5G

- Cellular BVLOS(Beyond Visual Line of Sight) drone operations
 - To transmit & receive cellular 4G LTE, 5G signals
 - High efficiency in a small size

- **Bluetooth** Bluetooth: for short range pairing/configuration • WiFi: short to medium range drone communication
 - To communicate portable device
 - / IEEE 802.11 b/g/a/n communication
 - Compact size / SMD type

FPCB


Carri

Embedde

d Active

connector

Available as 2 in 1 Antenna

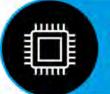
WIFI6E 2x2 MIMO Patch Antenna (15x15x2mm, SMD)

• Multi-band GNSS and LTE Antenna design in one case

Good isolation between with LTE and GNSS Antenna

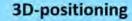
UWB

- Indoor drone navigation, collision avoidance
- Circular polarization antenna for UWB anchor
- Compact size / SMD type



UWB Transceiver Module

3D accurate positioning in real time & radar

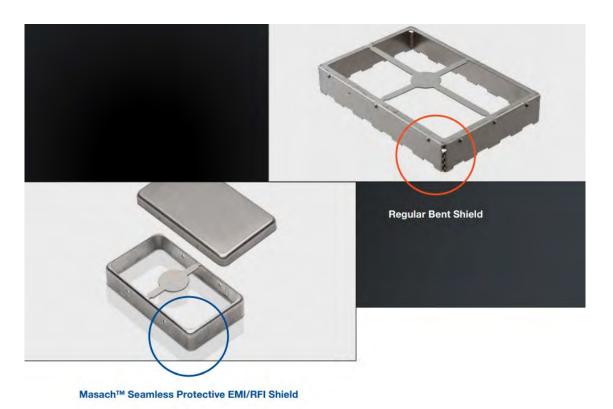

QM35825: UWB Low , 6.5 & 8.0 GHz SoC compliant with IEEE 802.15.4z™-2024

UWB radar for automated obstacle detection significantly preventing crashes

Drone 3D location is determined in real time using fixed UWB anchors on the ground, achieving accuracy of ±5 cm and ±2° angle.

- Real time location enables :
 - "Find My Drone" localization (hidden in vegetation after landing) –
 QPG6200 needed for BLE out of Band pairing with smart phone.
 - Flight control feedback loop in case of wind drift for automated & stabilized flight
 - Swarm of drones: drone to drone precise 3D real-time positioning (drone choreography with accurate positioning)
 - Automated return to base & safe landing indoor

Flight Control Unit



UWB ground anchors

UWB Radar Sensing

EMI/RFI Shielding

Features & Benefits:-

- Seamless Protective Cage for higher shielding effectiveness.
- Optimal Planarity for higher yield on reflow soldering
- Solid Construction to resist dents and warps
- Two-piece Shield Design enables to repair components without removing the shield, saving time and reducing repair damage.

Why EMI/RFI Shielding is required in drone?

Miniaturization and Density: Drone components are small and densely packed, results in internal signals interfering with one another. EMI/RFI shielding prevents this crosstalk between adjacent circuits.

Ground Control Unit

Flight Control Unit

- Mission-Critical Protection: Protecting drone vital systems, such as flight control, navigation and payloads from internal & external interference.
- Stable communication links: Ensure uninterrupted communication links between drone and ground control unit.

Masach Tech is certified AS9100 standard, which is a necessary requirement for military drone.

Navigation & Sensing

Navigation & Sensing

IMU, INS, Tilt Sensor

Dynamic Tilt Sensor

Product	Use Case in Drone
Inertial Measurement Unit (IMU)	 Provides calibrated 3D acceleration and angular rate for navigation and attitude. Necessary for flight stabilization and motion tracking.
Inertial Navigation System (INS)	 Combines IMU + GNSS with sensor fusion algorithm to provide optimized position-velocity-time + attitude measurement for L2-L5 navigation and safety. Used for autonomous navigation and Beyond Visual Line of Sight(BVLOS) flights.
Dynamic Tilt Sensor	 Combines accelerometer, gyro and temperature sensor w/advanced calibration and algorithms to provide accurate pitch and roll in dynamic situations. Ensures stability, level flight, and safe landing. Critical for hovering, take-off, and obstacle avoidance.
	21

Navigation & Sensing

IMU, INS, Tilt Sensor

Flight Control Unit

IMU383ZA

- Triple redundant sensor architecture for ultra-high reliability
- 6DOF
- High performance (1.3 deg/hr, 0.08 deg/root-hr)
- Interface: SPI/UART

MTLT335D

- Triple redundant sensors with fault detection
- 6DOF
- Interface: CAN2.0 and RS232

OpenIMU335RI

- Triple redundant sensors with fault detection
- 6DOF(9DOF optional)
- Interface: CAN2.0 and RS232
- Open-Source Tools

INS401 / INS402

- INS with multi-band RTK/ GNSS receiver
- Triple-redundant inertial sensors, and Positioning Engine.
- Single (INS401) and Dual (INS402) antenna versions available
- Interface: Ethernet, UART, SPI and CAN

Power Management IC

Power Management IC (PMIC)

Voltage Regulation

Power Sequencing & Distribution

Protection

PMIC ensures efficient energy conversion → stable flight, longer battery life, and safer drone operation.

Voltage Regulation

- Converts battery voltage into stable DC voltage rails
- Ensures flight controller & sensors run reliably

Power Sequencing & Distribution

- Activates critical systems first (flight controller, sensors)
- Delays non-essential payloads
- Prevents inrush current & improves efficiency

Built-in protection

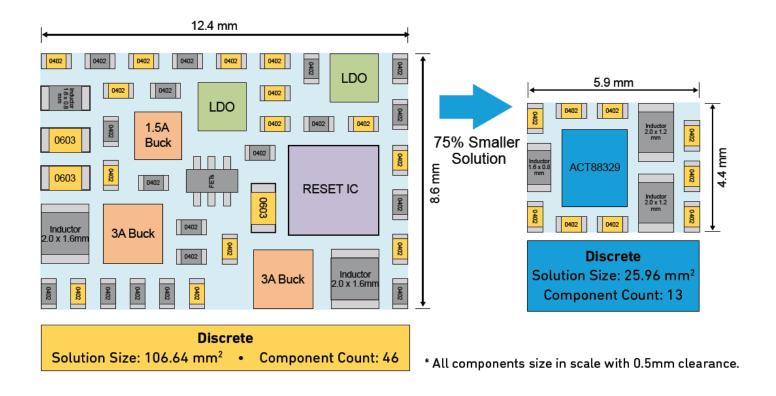
- Prevents damage from high or low battery voltage
- Stops excess current or short-circuits
- Shuts down if overheating occurs

Qorvo's Power Management ICs (PMICs)

- Reduce cost & size with integrated power management.
- Shorten time-to-market.
- Add flexibility through programmable features.
- No custom firmware needed configure via I²C + ActiveCiPS™ dongle.

Power Management
Unit

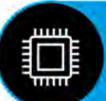
Power Management IC Power Management IC



Power Management Unit

ACT88329

ActiveCiPS is not just reduction of external components but also:


- Configurable via I2C current limits
- Adjust GPIO functionality
- Adjust current limits and other protection features during system development
- Multi-time programmable
- Customer developed startup and shutdown configurations

The diagram above illustrates a typical size reduction achieved through the use of Qorvo's innovative, configurable power supply solutions.

Power Management IC

Supporting PMIC for QM35825 UWB Solution

ACT88329: Five Rail, Fully Configurable, Small WLCSP Package PMIC

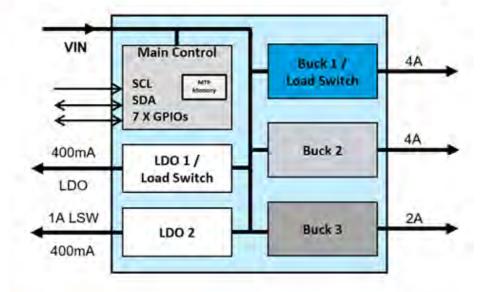
Optimized Transient Performance with COT Control

2x 4A Bucks, 1 x 2A Buck

All Buck Work with 0.47uH Inductor /22uF caps.

2x 390mA LDOs

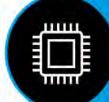
7 Programmable GPIOs


Multi-time Programmability with Integrated I2C Interface for Monitoring & Control

Reference Design Available

QOCVO

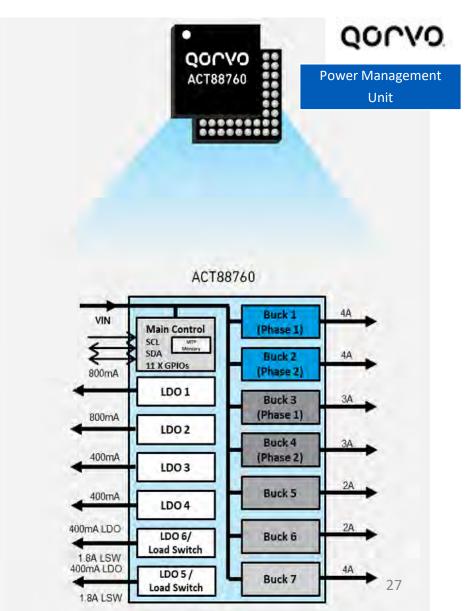
Power Management Unit

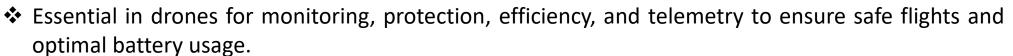


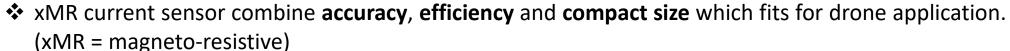
System Performance Comparison between ACT88329 and Discrete Solution

Power Solution	Max I_battery Rx (mA)	Max I_battery Tx (mA)	Sensitivity (dBm)	PER (%)
ACT88329	117	150	-96.5	0.9
Discrete	177	204	-96.6	1.0

Power Management IC


Provides configurable options to manage power for Drones requiring high voltage rail counts


ACT88760: Dual-Phase Bucks, High PSSR LDOs, 13 voltage rail PMIC


- ACT88760 can support up to 13 voltage rails
- Wide input operating range: 2.6V 5.8V
- ♦ High integration leads to small form factor ~3.85x3.85mm
- 3x 4A (5A peak), 2x 3A (4A peak) & 3x 2A (3A peak) Buck Regulators
- 6x LDOs / Load Switch with LDO5,6 having Load Switch (LSW) or LDO Configuration Options
- Low Quiescent Current (IQ<15μA for Bucks & IQ~20μA for LDOs)
 LPM (Low Power Mode) Operation
- All bucks need only 3 external components (each) to operate
- Each block is highly configurable

Current Sensor

Power Management Unit

XMR current sensor vs other technologies

ACEINNA xMR vs Hall Effect

- Higher bandwidth, lower phase shift
- Faster response time
- Lower offset and Noise
- Better accuracy

ACEINNA xMR vs Current Transformer

- Response to DC and AC
- No core saturation effects
- Smaller size
- Simpler to design

ACEINNA xMR vs Shunt Resistor

- Inherent isolation
- Lower power loss
- Less components, space savings
- Simpler solution

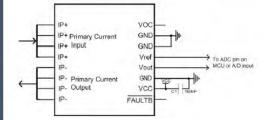
Aceinna MCx1101 & MCx2101

Bandwidth : 1.5MHz(3dB) MCx1101

5.0MHz(3dB) MCx2101

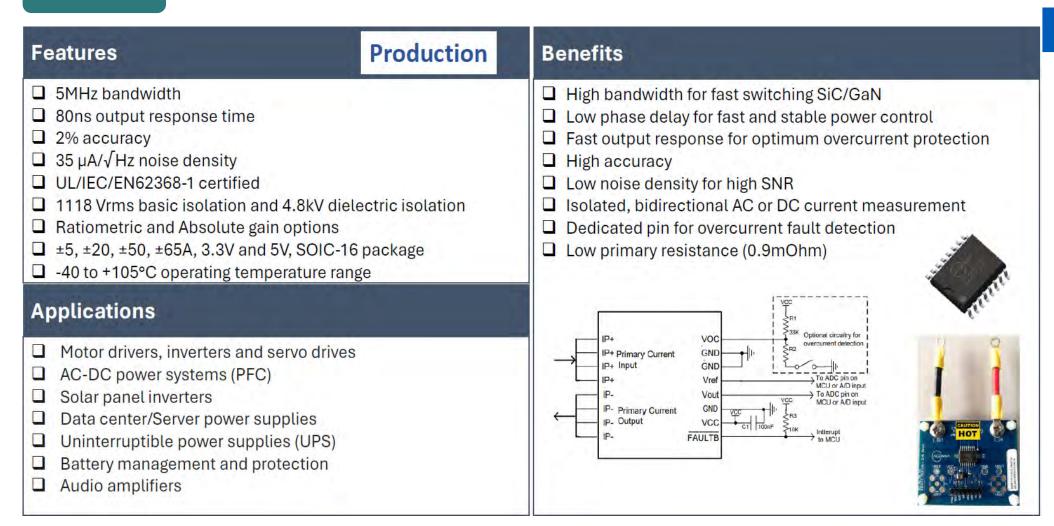
Gain Type : Fixed or Ratiometric Gain

Package : SOIC


Current Range Options: ±5A, ±20A, ±50A, ±65A

Supply Voltage Option: 3.3V, 5.0V

Evaluation board available for rapid prototyping


Current Sensor

MCx1101

Power Management Unit


SESI Series

Magnetics Power Inductors

Magnetics

CCM Series (Chameleon Concept Magnetics)

Magnetics Power Inductors

❖ Miniaturization: Compact CCM & SESI Series inductors handle high currents in small footprints.

Energy Conversion: Inductors enable efficient buck/boost

Filtering: Reduces noise & ripple, ensures clean voltage rails

!solation & Safety: Transformers provide galvanic isolation in

❖ **High Reliability:** Aerospace-grade magnetics designed for shock, vibration & high temperature.

THE SEA

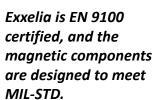
Overmolded Nanocrystalline Toroids

Magnetics | Common Mode Chokes

CUSTOM EXAMPLE

Product Series:

HV paths.


Magnetics Application:

DC/DC conversion.

for sub-system in drone.

- ❖ SESI & CCM Series inductors → energy storage & efficient DC/DC conversion.
- ❖ Nanocrystalline Toroids (chokes) → EMI filtering & noise suppression.
- ❖ DAB Transformer → for galvanic isolation and bidirectional power transfer.

Capacitors

Capacitors Application:

- Energy Storage: Supplies short bursts of current to motors/ESCs.
- ❖ Voltage Smoothing: Works with inductors for stable DC/DC output rails.
- ❖ Decoupling: Filters high-frequency noise → protects sensitive IMU, GPS, comms.

Key Highlights:

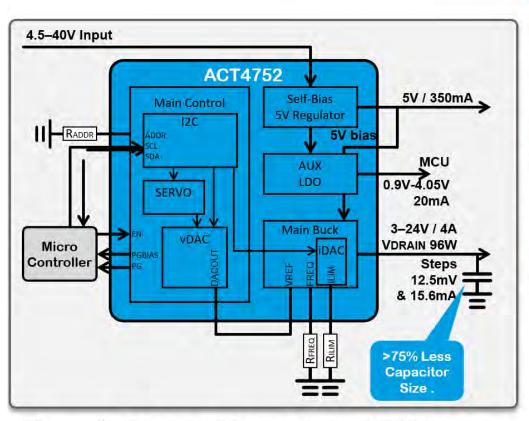
- ❖ Designed to operate from −55 °C to +150 °C, withstanding altitude, shock, and vibration.
- ❖ Certifications: Meet MIL-PRF, EN9100, and NADCAP aerospace standards → trusted for defense and avionics applications.

Product Series

- MML:Light weight, high energy density film capacitors for PMUs/DC-DC
- ❖ PM90X: High-capacitance power film capacitors for DC-link & propulsion
- CT79 / CT79E: Wet tantalum, MIL-qualified; robust for avionics & defense drones
- PPA: High-voltage filtering film capacitors for PMU smoothing
- ❖ PRORELISIC 125: Axial capacitors, reliable at up to 125 °C
- ❖ 880P / 882P: Stable film capacitors for avionics & signal-critical circuits

DC/DC Converter

Use Case: As an external DC/DC when PMIC rails are insufficient


ACT4752

96W/40VIN, Industrial CC/CV Regulator, with low-power self-biasing

Power Management Unit

✓ Optimized for small sized MLCC caps.

- Eliminates the need for expensive large Aluminum Caps.
- Integrated FETs for small FF design.
- 2 additional rails available for MCU and Peripherals

✓ Low Noise for Sensitive RF Power Supply

- Sync to external clock or internal oscillator (450KHz-2.25MHz) for reduced noise and EMI
- Multiple EMI Configurations via I²C
- Spread spectrum

√ Programmable Output

Full Control via I2C.

- Voltage Range: 3 21V in 12.5mV Step Current Range: 0 – 4A in 256 steps of 15.6mA
- Factory-Programmed Defaults, with <u>Optional</u> I2C On-the-fly Control
- iDAC for precise current limit.

Thermal Management

Thermal Management

Key components in drone that need thermal management:-

Motors and Electronic Speed Controllers (ESCs): Generate intense heat especially during high-load operations, long flights, or when carrying a heavy payload. Inadequate cooling can lead to reduced motor efficiency, degraded performance, or even motor failure.

Batteries: Li-Po batteries generate significant heat during charging and discharging. Thermal management is required to manage the lifespan and mitigate the thermal runaway risk, which is of critical safety concern.

Flight Controller Unit: High computational load generates a substantial amount of heat, which can lead to performance throttling or system instability if heat is not properly dissipated.

Payload Modules: Any additional sensors or equipment (e.g., thermal cameras, LiDAR, or chemical sensors) can generate their own heat, which must be accounted for in the drone's overall thermal design.

Thermal management techniques:-

Passive Cooling Systems:

- Heatsinks
- Thermal Interface materials(TIMs)
- Heat Spreaders
- Phase Change Materials(PCMs)

Active Cooling Systems:

- Fans
- Thermoelectric Coolers
- Liquid Cooling
- Heat Spreaders
- Phase Change Materials(PCMs)

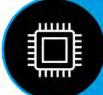
Hybrid Cooling Systems:

Heatsinks and fans combination

Flight Control Unit

Power Management Unit

Driving Unit



Battery Management

Battery Management Battery Management IC

Single Chip BMS solutions support 10s-20s applications across a wide range of cell chemistries

PAC22140 & PAC25140: Up to 20s Intelligent Battery Management SOC with ARM Cortex MCU, Integrated PMIC, and BMS AFE, including cell balancing

Fully Programmable Industry-Standard ARM

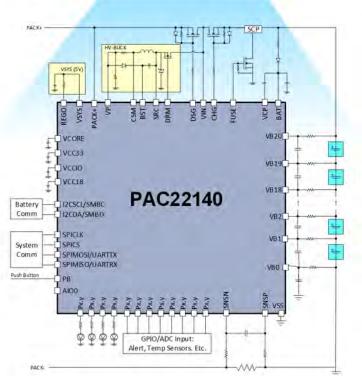
- PAC22140 50MHz ARM M0 32kB Flash/8kB SRAM
- PAC25140 150MHz ARM M4F 128kB/32kB SRAM

Complete Power Solution

- 145V DC/DC Buck
- 5V 225mA
- 3.3V 90mA
- MCU Vcore

Three ADCs for Monitoring Key Parameters

- 16-bit SD ADC for Current Sense with Differential PGA
- 16-bit SD ADC for Voltage Sense and Cell Balancing
- · 10/12-bit SAR ADC for Additional Voltage/Temperature Sense



Single IC required for complete BMS solution

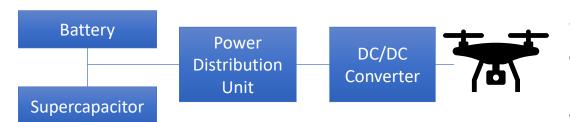
Power Management Unit

Energy Storage

Energy Storage

Drone Battery Types

Power Management Unit


			Lithium Iron	
	Lithium Polymer (LiPo)	Lithium-Ion (Li-ion)	Phosphate(LiFePO4)	Solid-State Batteries
Nominal Voltage (per cell)	3.7V	3.6-3.7V	3.2V	3.7-4.2V
Energy Density(Wh/kg)	150-220	200-265	90–160	300-500
Discharge Rate(C Rating)	High(20-75C)	Medium(2-10C)	Medium(10-25C)	Medium(5-290C)
Weight Efficiency	★★★★ ☆	***	***	****
Typical Life Cycle	150-300	300-500	1500-3000	500-1000+
Safety	Low (Risk of thermal runaway if not handled safely)	Medium (Generally safer than LiPo; less prone to swelling)	High(Highly stable chemistry, very low risk of thermal runaway)	Excellent (Significantly reduced risk of thermal runaway/fire)
Common Form Factor	Pouch cells (Flexible for custom packs)	Cylindrical (e.g., 18650, 21700), some pouch cells	Cylindrical, prismatic, sometimes pouch cells	Thin-film, pouch, or custom- shaped cells
Common Use Cases	FPV racing drones, aerial photography drones needing bursts of power	Long-endurance inspection, mapping, surveillance, logistics drones	Agricultural drones, industrial drones, delivery drones where safety is critical	Advanced long-endurance, high- safety industrial drone
Key Advantage	High power delivery, good power-to-weight ratio	Longer flight times due to higher energy density	Exceptional safety, very long lifespan, high stability	Superior safety, potential for breakthrough in energy density
	Requires careful handling,		Lower energy density (heavier for	·
	lower energy density than Li-	Generally lower peak discharge	the same capacity), lower nomina	_ ·
Key Disadvantage	ion for endurance	rates than LiPo	voltage per cell	adoption

RELL can support the above battery types – standard or custom battery cell or module.

Energy Storage

Combining battery & ultracapacitor for hybrid power supply system

Why Hybrid?

- Batteries: High energy density, but limited peak current and cycle life.
- Ultracapacitors: Ultra-high power density, rapid charge/discharge, long cycle life, but low energy density.
- **Benefit:** Supercap handles sudden spikes; battery delivers sustained energy.

Key Applications in Drones

- Takeoff & Climb: Supercap supplies burst power, reducing battery stress.
- Maneuvers & Wind Gust Rejection: Immediate high-current response.
- Emergency Power: Brownout protection for flight controller
 & communication systems.
- Regenerative Capture: Absorbs energy during prop braking or rapid descent.

BLDC Motor Controller IC

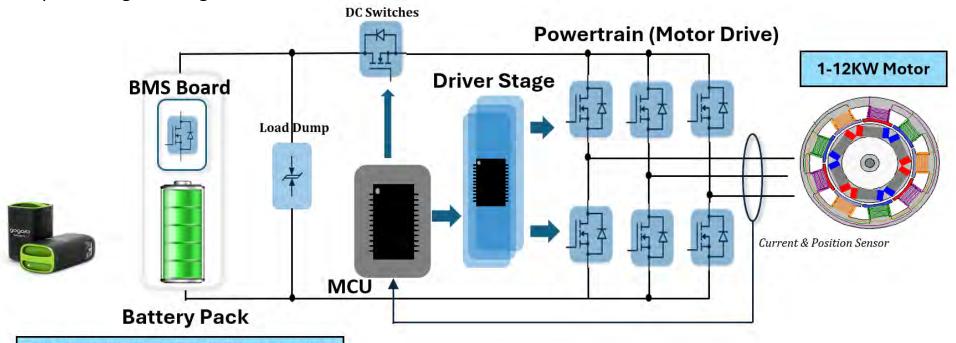
Provide precise and efficient control for ESCs and payload wenches

PAC5527: 48V BLDC Motor Controller and Driver with Charge Pump and Configurable AFE

- 150MHz Arm® Cortex®-M4F with 128kB FLASH, 32kB SRAM with ECC 16 x 3.3V IO
- 6V 48V Supply Input
- Charge Pump DC/DC for HS Gate Drive
- Buck-Boost DC/DC for LS Gate Drive
- 3 x Differential, 4 x Single-Ended PGAs
- 6x6mm, 48-pin QFN

Electronic Speed Control

Driving Unit



Power MOSFET

Patented SuperQ™ technology 150V & 200V MOSFETs

- ✓ Industry's lowest on-resistance
- ✓ Robustness under fault conditions
- ✓ Optimized gate design for wide SOA

48V/60V/72V/80V/84V/96V/108V/120V

BMS + DC Switches – Optimized for low Rds,on, Linear operation, Wide SOA, Ruggedness

Motor Drive Switches – Optimized for Ruggedness, Low Rds,on and High Current Rating, Low Switching Loss

Driving Unit

iS15M7R1S1C

150V, 6.4mΩ max, N-Channel MOSFET in PDFN 5x6mm package

iS20M028S1P

200V, $25m\Omega$ max, N-Channel MOSFET in TO-220 package

EMI Filter

Functions:


- ✓ Reduces EMI noise generated from complex electronic system including ESC, motor and MOSFET.
- ✓ Prevent malfunctions and ensure reliable operation of drone.
- ✓ Ensure drone design is meeting the electromagnetic compatibility(EMC) standard.

Driving Unit

- AFX : Feedthru Capacitor Coaxial

Richardson Electronics: Value Proposition

One-Stop Solution for Drone Design

Comprehensive power & RF components coverage

- Critical parts for Power, Safety, Payload and Thermal Management in drone design.
- Ruggedized & reliable parts (EN/AS9100, MIL-STD grade magnetics and capacitors).

Cutting-Edge Technologies

- Aceinna xMR Current Sensor Precise sensing measurement with magneto resistive sensor.
- iDEAL Semiconductor SuperQ MOSFET High-efficiency SuperQ switching.
- Qorvo MEMS force sensor Enable sleek and innovative HMI design.
- Qorvo Programmble PMIC- Flexible and configurable power sequencing.

Full Support from Richardson Electronics

- Design support on components selection, reference designs and evaluation kits.
- End-to-end supply chain integration, from concept design to production.

Disruptive Technologies

Provide Technical Expertise & Engineered

Provide Exceptional Global Support

Provide High Quality
Products for Over 75 Years

rellpower@rell.com | rellpower.com

Appendix 1

TECHNOLOGIES

Component **Payload Type Function** Inertial Measurement Unit (IMU) Pavload - Gimbal Control Gimbal stabilization feedback (pitch/roll/yaw) BLDC Motor Controller IC (MCU + Gate Driver IC + Voltage Regulator) Payload - Gimbal Control 3-axis brushless gimbal motor control Power MOSFET Payload - Gimbal Control Motor phase switching for gimbal axes Current Sensor Payload - Gimbal Control Motor current monitoring & protection Capacitor Payload - Gimbal Control Bulk/snubbers for driver supply & transients Magnetic Pavload - Gimbal Control Inductors/chokes in driver power path EMI Filter / Ferrite Bead Payload - Gimbal Control Cable/common-mode noise suppression Heatsink Payload - Gimbal Control Thermal dissipation for drivers & MOSFETs Power Management IC Payload - Gimbal Control Local regulation for gimbal controller & sensors DC/DC Converter Payload - Gimbal Control Step-down from flight battery to logic/driver rails Thermal Interface Material (TIM) Improve heat transfer to heatsink Pavload - Gimbal Control Motion compensation for point-cloud accuracy Inertial Measurement Unit (IMU) Payload - LiDAR EMI/RFI shielding Payload - LiDAR Reduce interference to/from laser drivers & receivers Power Management IC Payload - LiDAR Stable rails for laser, APD/receiver & MCU/FPGA DC/DC Converter Pavload - LiDAR High-efficiency step-down for laser/logic rails Current Sensor Payload - LiDAR Laser driver current monitoring & safety Payload - LiDAR Decoupling & ripple suppression near laser/ADC Capacitor Payload - LiDAR Inductors for converters & filtering Magnetic Heatsink Pavload - LiDAR Thermal management for laser driver & processor Thermal Interface Material (TIM) Payload - LiDAR Couple hot devices to heatsink/case RF Front End Payload - SAR Up/Down-conversion, LNA, PA chain for radar Payload - SAR Transmit/receive array (patch/waveguide) Antenna EMI/RFI shielding Payload - SAR Contain RF energy; protect avionics Power Management IC Pavload - SAR Multiple regulated rails for RF/logic DC/DC Converter High-power conversion for PA & FPGA/SoC Payload - SAR Current Sensor Payload - SAR Pulse current monitoring & protection Ultracapacitor Payload - SAR Pulse-power buffer for transmitter bursts Capacitor Payload - SAR RF chain decoupling, bias tees, bulk storage Inductors/chokes in RF supply filters Magnetic Payload - SAR Heatsink Payload - SAR Dissipate PA, LNA and processing heat Thermal Interface Material (TIM) Improve conduction to chassis/cold plate Payload - SAR